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Abstract

How effective are demand-side incentive programs at reducing CO2 emissions?
I use data on residential solar panel installations in Massachusetts to estimate a
dynamic model of solar panel adoption (or demand) that accounts for both cur-
rent and future savings. The model allows me to evaluate several solar incentive
programs implemented in Massachusetts in terms of their impacts on adoption
and abatement of CO2 emissions. In addition, I analyze each program’s cost effec-
tiveness by comparing the social benefit generated due to displaced CO2 emissions
to the government’s expenditure on each program. My estimates suggest that the
social benefits generated are modest relative to the magnitude of public spending.
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1 Introduction

Federal and state governments in the United States have experimented with a variety

of policies designed to encourage the adoption of green technologies. In particular, over

the past two decades policymakers, across the U.S. and abroad, have championed the

development of the photovoltaic (PV) solar industry, in large part as a response to

increasing alarm about the impact of climate change on the environment and world

economy. Many policymakers view the expansion of the renewable energy sector as a

promising means to curb greenhouse gas emissions, especially carbon dioxide emissions,

and increasingly PV solar makes up a significant portion of renewable energy generated

in the U.S.1

Further investment in renewables and other clean energies aimed at reducing CO2

emissions is poised to continue with the recent passage of the 2021 Investment Infras-

tructure and Jobs Act (IIJA), which includes significant funding for new energy infras-

tructure.2 Among the energy projects described in bill are upgrades to the power grid

in order to integrate renewable energies, R&D funding for clean hydrogen, advanced

nuclear reactors, and carbon capture technologies, investment in a national network of

electric vehicle charging stations, and energy efficiency improvements for public facili-

ties. Given the vast array of potential investments and uncertainty about their relative

effectiveness at abating future CO2 emissions, understanding where the marginal dollar

might be spent most effectively is crucial for policymakers, and given the attention

renewables in particular have received, an important policy question is to what extent

should solar subsidies play a role in future energy policy?

In this paper, I examine the effects of demand-side incentive programs on households’

decisions to adopt solar panels and on the abatement of CO2 emissions. Specifically, I

analyze the effects of three types of incentives introduced in Massachusetts, (1) upfront

subsidies (federal and state tax credits and grants), (2) solar renewable energy certifi-

cates (SRECs), and (3) net metering, using a structural model of PV solar adoption.

Then, I conduct a cost-benefit analysis of these programs to determine whether the

social value of avoided emissions attributable to the programs outweighs their costs.

Because the incentive programs I analyze vary in design, households receive some ben-

efits upfront at the time of adoption, while other benefits accumulate over the lifespan

of a PV system. A key feature of my analysis is that I model households’ decisions

to adopt PV as dynamic—that is households choose between adopting PV today or

1According to the U.S. Energy Information Administration (EIA), renewables accounted
for 12% of total energy consumption in 2020 of which 11% was generated by solar,
https://www.eia.gov/energyexplained/renewable-sources/

2Of the $550 billion laid out in the bill $79 billion has been allocated for power and grid projects
and $15 billion for electric vehicles and buses, https://www.congress.gov/bill/117th-congress/house-
bill/3684/text
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delaying adoption until a future date. The dynamic aspect of the model enables me

to quantify the impact that households’ discounting of future benefits has on adoption

and the abatement of CO2 emissions. Additionally, and crucially in this setting, rather

than assuming households’ discount factor, I am able to identify and estimate their

discount factor directly from my data using variation in the difference between upfront

installation prices and long-term incentives, which is generally not possible in other

empirical studies (Magnac and Thesmar 2002, De Groote and Verboven 2019). My

results are informative for environmental policy and more generally for public policy

regarding investments in new technologies—particularly related to the design of subsidy

programs.

In an effort to incentivize residential and commercial adoption of solar panels, a

patchwork of demand-side policies aimed at reducing the price of PV systems was leg-

islated in the U.S. beginning in the mid-2000s. These programs include federal and

state solar tax credits, state rebates and grants,3 net metering by electric utilities,4 and

the introduction of renewable energy certificate (REC) markets,5 a form of production-

based subsidies. Massachusetts implemented its own version of each of these policies,

which makes it a rich setting in which to study the effects of these programs. With

household-level data on adoptions from the Massachusetts Clean Energy Center (Mass-

CEC) spanning from 2008 to 2018 and additional information about the timing and

implementation of Massachusetts’ solar incentive programs, I estimate aggregate res-

idential demand for PV systems using a dynamic discrete choice model (Rust 1987,

Gowrisankaran and Rysman 2012). This model allows me to disentangle the effect

of each program on overall demand and thus quantify its contribution to cumulative

adoption and emission abatement by simulating counterfactual scenarios.

Given that solar incentives in Massachusetts were quite substantial during my sam-

ple period, on average about $22,000 per residential installation,6 unsurprisingly I find

that each program had a substantial impact on residential adoption. I find that up-

front subsidies by increased adoption by 5-fold and solar RECs increased adoption by

4.6-fold. Quantifying the impact of net metering on adoptions is more subjective due

to lack of micro-data on households’ electricity consumption, however, relying upon

my most conservative estimate I find a 16% increase in PV system adoption as a re-

sult of net metering. These findings are robust to a number of modeling specifications

including allowing for heterogenous preferences correlated with observable household

3Usually capacity-based subsidies i.e. incentives increasing in the capacity of an energy generator.
4Mechanisms by which renewable owners are compensated by their local utilities for clean energy

generation.
5Tradeable certificates supported by electric utility renewable portfolio standards; quotas for util-

ities’ energy supply).
6Approximately $103,000 per household accounting for total subsidies distributed over the lifespan

of a PV system.
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demographics.

Beyond quantifying the effect of each incentive on household adoption, I undertake

several welfare analyses. First, I quantify the amount of consumer surplus generated

by each program. Second, using a recent estimate of the social cost of carbon (SCC)

from the climate literature (Cai and Lontzek 2019), I approximate the social value of

avoided CO2 emissions attributable to each program. I find that the value of avoided

CO2 emissions is two orders of magnitude smaller than the amount of government

support. For example, upfront subsidies resulted in a reduction in CO2 emissions during

the 2008–2017 period valued at only $5.25 million, while on the order of $280 million

was invested in upfront subsidies. Put another way, in order for the government to

breakeven on its investment in upfront subsidies, the social cost of carbon would have

to be over $1,269 per (metric) ton of CO2 or almost 25 times larger than the current

federal estimate of $51 per ton of CO2.7

This paper contributes to the energy and environmental policy literature on sub-

sidies for renewables and is related to several other strands of the economic literature

including the adoption of durable goods and diffusion of new technologies in industrial

organization, the application of dynamic discrete choice models in econometrics, and

time discounting in behavioral economics.

De Groote and Verboven (2019) is the closest paper to my work. Like me they esti-

mate a dynamic model of PV adoption in which households’ discount factor is identified

by changes in future benefits relative to current prices. Consistent with my results they

find that households discount the future benefits of adopting PV significantly, and as a

result, find that upfront incentive programs are more effective than long-term incentive

programs dollar-for-dollar due to this discounting. However, most distinctly from their

paper, I use my estimates to quantify the effects of different incentive programs on

adoption and abatement. Additionally, I find that households are even more myopic in

my setting, which may be explained by institutional differences in Massachusetts and

Belgium’s renewable energy policies, as well as by differences in cultural attitudes to-

wards renewables. In particular, SREC prices were determined by a market mechanism

in Massachusetts but determined top-down by the government in Belgium, which may

explain the difference in households’ perception of investment risk across these settings.

Also, my identification strategy is different from their’s. I use both cross-sectional

variation across geographic markets and time series variation in the difference between

upfront installation prices and future benefits to identify households’ discount factor,

while De Groote and Verboven (2019) rely on time series variation. And because

7See “Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide Interim
Estimates under Executive Order 13990,” Interagency Working Group on Social Cost of Greenhouse
Gases, United States Government, February 2021. In my analysis, I use Cai and Lontzek’s (2019)
mean estimate for the SCC in 2020 of $87 per ton of carbon or $23.73 per ton of CO2.
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Massachusetts is segmented into distinct electric utility markets, the cross-sectional

nature of my data allows me to use an alternative instrumental variable strategy to deal

with price endogeneity (Kalouptsidi, Scott, and Souza-Rodrigues 2021). I use Hausman-

Nevo instruments (Hausman 1996, Nevo 2000) to correct for price endogeneity, while

they use input prices as cost shifters.

Other papers in the environmental literature have used dynamic adoption models

to analyze the effect of subsidies on adoption and the abatement of CO2 emissions. For

example, Burr (2014) and Langer and Lemoine (2018) use similar models to study the

effects of government subsidies on PV adoption in California. Burr (2014) compares the

capacity-based subsidies implemented in California to production-based subsidies and

finds they are equally effective but that production-based subsidies are more efficient.

Langer and Lemoine (2018) show that the optimal government subsidy in a dynamic

technology adoption setting depends on the regulator’s preferences in addition to house-

holds’ behavior, including time discounting, and find that the most efficient policy for

California would have been an increasing subsidy schedule as opposed to the declining

schedule that was enacted. However, both studies take households’ discount factor as

given, which is a key parameter in measuring the efficacy of subsidies for new technolo-

gies. I bring empirical estimation of the discount factor to bear on the analysis of the

effects of subsidies on emission abatement.

Gillingham and Tsvetanov (2019) also analyze solar incentives using data from Con-

necticut but treat households decisions to adopt PV as static. They find a much lower

implied cost of abatement for Connecticut than I find for Massachusetts.

As previously described, many states across the US have implemented solar incentive

programs, however, each state has slightly different policies, which provides a unique

opportunity for researchers to investigate the effectiveness of such policies. The policy

that most distinguishes Massachusetts from other states is the design of its SREC

market, which incorporates a price ceiling and a price floor as mechanisms to support

prices. This design resulted in a relatively robust REC market compared to other

states where certificate prices tended to collapse, and also stands in contrast to the

SREC program that De Groote and Verboven (2019) study. Therefore, Massachusetts

provides a unique case study of the role of market design in public policy, as well as the

effect of relatively generous, sustained production-based subsidies on PV adoption. To

my knowledge, mine is the first empirical study of the effects of Massachusetts’ solar

incentives on PV adoption and the first to analyze such a market mechanism.

Yet more papers have studied other aspects of the solar panel market that impact

residential adoption. For, example Bollinger and Gillingham (2012), Bollinger, Gilling-

ham, Kirkpatrick, and Sexton (2020) use data from California and Connecticut to study

the impact of subsidies and peer effects on solar adoption. Their results suggest that
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peer influence can have a significant impact on solar panel adoption, which implies that

government investment in solar may benefit from a multiplier effect.

Finally, other papers in the literature have analyzed challenges associated with the

increased propagation of, and reliance upon, solar power. Using data from Arizona,

Gowrisankaran, Reynolds, and Samano (2016) investigate the social costs of solar gen-

eration intermittency and find that these costs are substantial. Borenstein (2017) shows

that California’s usage-based electricity rate structure increased high-usage customers’

financial incentive to adopt solar relative to low-usage customers by perhaps as much

as the 30% federal solar tax credit, highlighting the importance of analyzing the distri-

butional consequences of increasing electricity prices and net metering policies.

The primary contribution of this paper to the environmental and energy policy

literature is the comparison of the effects three policy instruments commonly applied

to incentivize the adoption of renewables, tax credits (and other upfront subsidies),

RECs, and net metering, on adoption rates and the abatement CO2 emissions. A

secondary contribution is that I undertake a cost-benefit analysis of these programs

using my estimates, and find that the social cost of carbon would have to be significantly

larger in order to justify the programs’ expenses. A third contribution is that I provide

evidence on the value of market design in markets for new technologies—Massachusetts’

distinct SREC market mechanism sets it apart from other SREC programs. Finally, this

paper adds to a growing literature applying empirical methods developed in industrial

organization to analyze environmental policies (see Kellogg and Reguant 2021 for an

overview).

The rest of the paper is organized as follows. In Section 2, I outline the industry

and background information on the residential solar energy policies established in Mas-

sachusetts. Section 3 discusses the economic model. Section 4 describes the data and

other empirical inputs of the model. Section 5 discusses identification of the model.

Section 6 discusses the estimation, empirical results, and robustness analyses. Sections

7 and 8 describe the implementation of different policy counterfactuals and discuss their

results. Section 9 concludes.

2 Industry Background

2.1 Technology and Supply

Photovoltaic solar systems convert sunlight into electrical energy. The fundamental

component of PV systems are solar cells fabricated from semiconductor material, gen-

erally silicon, which absorb sunlight, transfer the light’s energy to electrons, thus gen-

erating an electrical current. In a residential system, which typically consists of several

5



chained modules or panels of solar cells, this current then flows through metal conduc-

tors on each cell to electrical wires that carry the electricity either to the local utility’s

grid or to the home (see Figure 1). The other major component of a PV system is the

inverter which converts direct current (DC) to alternating current (AC) for home use.

The amount of energy a system generates, or its efficiency, largely depends upon the

material of its solar cells, as well as the system’s exposure to sunlight, where the num-

ber of sunlight hours in a location and panel placement and tilt (angle relative to the

ground) are important factors. The average residential system included in my sample

has a capacity of 7.5 kW and produces about 8,800 kWh of electricity annually, which

accounts for 118% of the 7,430 kWh of energy the average Massachusetts household

consumes each year.

When solar panels were first introduced, low energy efficiency and high cost pre-

vented their widespread use for all but the most specialized applications (for example in

the aerospace industry), however, as efficiency has increased and manufacturing costs

have decreased over time, PV solar has become increasingly viable for commercial and

residential use. The energy industry carefully tracks the decline in the manufactur-

ing cost of solar modules over time, and there is a large body of academic work that

decomposes this trend into various factors (see Figure 2). For example, Kavlak, McN-

erney, and Trancik (2018) document that “PV module costs [have fallen] by about 20%

with every doubling of cumulative capacity since the 1970s” and emphasize increased

module efficiency, R&D funding, and scale economies as the major contributing factors

over different periods. Louwen and van Sark (2020) find a structural break in this

trend beginning in 2008 which is at least partially explained by increased economies

of scale and learning-by-doing by Chinese manufactures entering the module market.

Data from the National Renewables Energy Laboratory (NREL) shows that costs of

components other than modules, and even some soft costs like labor, have also fallen

over time. This decline in cost is reflected in prices too; according to data from the

Lawrence Berkley National Laboratory (2019), over the past two decades PV system

installation prices in the U.S. have declined at a rate of 5-7% per year, largely due

to reductions in manufacturing costs (see Figure 3 for this trend in Massachusetts).

As I explain in greater detail in the estimation section, this secular decline in module

prices gives me a source of exogenous variation in local installation prices with which

to identify households’ price elasticity of demand for solar panels.

The PV system industry consists of module, inverter, and other component manu-

facturers, system installers that sell to end-users, and electric utilities which set elec-

tricity prices and control connectivity of renewables to the grid. Massachusetts has four

large “utility markets” served by investor-owned utilities (IOUs), which cover 303 of

Massachusetts’ 351 municipalities; the remaining 48 are served individually by small
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municipal electric companies (see Figure 4). Electricity prices are set subject to rate of

return regulation and tend to be set higher in areas served by IOUs than those served

by municipal utilities.

During my sample period, there were over 600 PV system installers operating in

Massachusetts. The majority appear to be local electricians or construction companies,

and the median number of installations by firms is two. However, the two largest

installers SolarCity (acquired by Tesla in 2016) and Vivint (acquired by Sunrun in 2020)

together account for 43% of all installations, 24% and 19% respectively. SolarCity and

Vivant started selling in Massachusetts in 2011 and 2012, respectively. Both companies

engaged in aggressive marketing campaigns, including door-to-door sales tactics, and

promoted solar lease agreements to lower-income customers with much success.

In this paper, I focus on the demand-side of the market rather than the supply-side

for several reasons. First, my primary focus is quantifying the effect of government sub-

sidies on demand; second, estimating a dynamic model of supply would be a challenge

in its own right; and third, given the number of installers in Massachusetts it appears

that the market, for installation at least, is relatively competitive which reduces the

importance of firms’ price setting behavior. Gerarden (2018) analyzes the supply-side of

the market but focuses on competition between solar panel manufacturers rather than

installers. While competition between manufacturers is potentially important, the size

of the market for residential PV in Massachusetts is small enough relative to the world

market that state policies are unlikely to have a meaningful impact on manufacturers.

2.2 Tax Incentives and Subsides

Since the early 2000s both the federal government and several state governments have

introduced relatively generous tax credits to support the development of the solar in-

dustry in the United States. Significant federal support for solar investment began

during the Bush administration. The Energy Policy Act of 2005 established a 30% fed-

eral tax credit for residential and commercial investment beginning in early 2006. The

Solar Investment Tax Credit (ITC) was extended by the Tax Relief and Health Care

Act of 2006 and then extended several more times in the wake of the 2008 financial

crisis under the Obama administration. The most recent version of the solar ITC (as of

December 2020) offers declining support for solar investment through the end of 2023:

30% from 2006 to 2019, 26% from 2020 to 2022, and 22% during 2023.8

Along with several other states (Arizona, California, Maryland, and New Jersey),

Massachusetts has become a leader in supporting the development of the solar industry

in the United States. Massachusetts offers several tax incentives, as well as direct

8https://www.seia.org/initiatives/solar-investment-tax-credit-itc
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subsidies to encourage the adoption of solar. The most significant, longstanding tax

benefit is the Residential Renewable Energy Income Tax Credit (RETC). Introduced

in 1979, the RETC instituted a state tax credit of 15% net expenditure (installation

price net any rebates) on renewable energy source property, up to a maximum $1,000

credit.9 Other tax benefits include the Solar Installation Property Tax Exemption,

which precludes increases in property taxes as a result of PV system installations, and

the Home Solar System Sales Tax Exemption, which exempts residential installations

from sales tax (6.25% in MA). For purposes of my analysis, I focus on the effect of

the RETC on households’ adoption behavior, because the benefits of the property tax

exemption are idiosyncratic and difficult to measure.

Massachusetts also directly subsidized the installation of residential and commercial

solar systems through two major rebate programs, Commonwealth Solar I and II, from

2008 to 2015. These programs offered solar adopters upfront rebates proportional to

system capacity (or capacity-based subsidies). These rebates decreased over time as

installation prices declined and were more or less phased out entirely by the end of

2016. Using installation data from MassCEC, I am able to observe the amount of

rebates credited to each system installation transaction, which allows me to measure

the aggregate effect of upfront rebates on adoption behavior.

2.3 Net Metering Program

In addition to tax credits and rebates, Massachusetts allows renewable energy system

owners to net meter. Net metering enables residential and commercial utility customers

that generate their own electricity to offset their usage as well as receive compensation

for excess production over and above their consumption. For example, suppose a resi-

dential utility customer owns solar panels. Energy generated by their solar panels (after

being converted from DC to AC) is either consumed or transferred to the grid via a

bi-directional meter. This meter keeps track of the net amount of electricity consumed

by the household, equal to total electricity transferred from the utility to the household

minus total electricity generated by the PV system and transferred to the grid. Under

a net metering program, the utility tracks the household’s monthly consumption and

production. When net consumption is positive, the household pays a bill for net usage.

When consumption is negative, the household receives a credit, which can accumulate

over a finite period.

Net metering has been practiced to some extent in Massachusetts since 1981, but

the Green Communities Act of 2008 significantly expanded the scope of net metering

in order to encourage investment in renewables. In particular, it allowed credit from

9https://www.mass.gov/regulations/830-CMR-6261-residential-energy-credit
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on-site generation to accumulate over time, which substantially increased the value of

net metering to solar panel owners. Customers of both IOUs and municipal utilities in

Massachusetts are allowed to net meter, however, municipal utilities are not obligated

to offer net metering. Privately owned PV systems (and other renewables such wind)

of 2MW capacity or less are eligible for net metering (if capacity is 60kW or less any

energy generating technology is eligible).10 As I explain in the model section, the benefit

of net metering to households is similar to, but distinct from, the benefit of avoiding

future electricity costs by adopting a PV system.

2.4 SREC Programs

In order to increase the proportion of electricity generated by renewables in the energy

sector, several state governments including Massachusetts have introduced renewable

portfolio standards (RPS) for public utilities. RPS require utilities to purchase a certain

portion of the energy they distribute from renewable suppliers or face financial penalties.

In Massachusetts, RPS were first introduced in 2003 and required that 1% of utilities’

total energy supply come from renewables. This share was ratcheted up by half a

percentage point per year until 2009 (4%), then revised to increase one percentage

point per year thereafter (13% in 2018).11

To support the expansion of the solar industry and allow utilities to have more

flexibility to meet their RPS targets, Massachusetts and other states introduced renew-

able energy certificate (REC) programs, which allow utilities to purchase certificates

(“rights” to renewable energy production) from households that own renewable energy

system owners in certificate markets. These certificate programs encourage solar panel

adoption by giving residential and commercial renewable owners the opportunity to sell

their certificates in these markets; in Massachusetts renewable owners earn one certifi-

cate for every MWh of energy they produce. Massachusetts introduced its first SREC

(solar REC) program in 2010 and has introduced three separate programs thus far.

PV systems installed from 2010 to 2013 were eligible for the SREC I program, systems

installed from 2014 to 2018 were eligible SREC II program, and systems installed from

2019 onward are eligible for the Solar Massachusetts Renewable Target (SMART) pro-

gram.12 My period of analysis is 2008 to 2018, therefore, I measure the benefits derived

from SREC I and II. Both of these programs allow PV system owners to earn SRECs

for up to 16 years. As I will discuss in more detail, the main difference between the

programs is the rate at which owners are compensated for their certificates (SREC I

certificates are more valuable than SREC II certificates).

10https://www.mass.gov/guides/net-metering-guide
11https://www.mass.gov/service-details/program-summaries
12https://www.mass.gov/guides/solar-carve-out-and-solar-carve-out-ii-program-information
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Certificate prices in Massachusetts’ SREC markets are determined by the supply of

and demand for certificates subject to regulatory constraints. Based on the mixed suc-

cess of REC programs in other states, the Department of Energy Resources (DOER)

designed a price support mechanism to stabilize SREC prices and ensure sustained

investment in solar over a number of years. Specifically, DOER introduced financial

penalties for utilities that failed to meet their RPS, as well as a quantity auction mech-

anism to sell off excess certificates in periods of low demand. Utilities that fail to meet

their RPS are required to pay a penalty equal to the shortfall of renewable energy

times an alternative compliance price (ACP) predetermined by DOER. DOER also

sets fixed auction prices, at which SREC owners are (almost) guaranteed to sell their

certificates.13 Schedules of ACPs and auction prices are published years in advance

to reduce uncertainty about the future value of certificates. As illustrated in Figure

5, SREC prices are determined by the supply of certificates from solar system owners

and demand for certificates by utilities, where the ACP acts as a price ceiling and the

auction price acts as a price floor. SREC I certificates are more valuable than SREC II

certificates because both ACPs and auction prices were initially set higher to encourage

early adoption.

The fact that SREC prices are bounded by ACPs and auction prices is important

in my empirical application, because I do not observe equilibrium certificate prices,

however, I do observe these bounds. Therefore, when I estimate the future benefits of

the SREC programs to adopters, I use the midpoint of these bounds as an approximation

for expected equilibrium prices.

2.5 Other Benefits

In addition to the aforementioned benefits, Massachusetts has also incentivized resi-

dential PV adoption by increasing access to financial markets. In particular, the Mass

Solar Loan Program enables eligible low income households access to low-interest loans

in order to finance PV system purchases.14 Unfortunately, I am unable to observe

whether or not installations were financed in my data, therefore, while the increased

financialization of residential solar may partially explain household adoption behavior, I

do not attempt to model it in my analysis. Table 1 summarizes the long-term incentives

that I consider in my analysis.

13The auction mechanism is quantity auction in which utilities bid for an amount of SRECs a fixed
price. If the market doesn’t clear i.e. not all certificates are sold, then the auction is conducted again
with the same fixed prices but the lifetime of the certificates is extended (increasing the certificates’
value). This process is iterated until the market clears.

14https://www.masssolarloan.com/
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3 Model

3.1 Overview

In this section, I specify a dynamic adoption, or demand, model for PV systems. In

the model, households choose among a discrete set of PV systems to maximize their

expected discounted utility. PV systems are differentiated on the basis of capacity or

energy production and price or the net present cost of installation. The net present

cost of installation of a system depends upon the upfront installation price net of the

upfront and long-term or future incentives offered by the government. Because upfront

installation prices are falling over time, and government subsidies vary over time, the

household faces an intertemporal tradeoff between adopting a system in the current

period or waiting until a future period when the net present cost of installation may be

lower. Recall that the ultimate goal of my analysis is to quantify the effects of different

incentive programs on adoption and abatement. In the model, these incentives enter

into the net present cost of installation. Therefore, the most policy relevant parameters

of the model are households’ price sensitivity and discount factor.

A major difference between my application of the model and De Groote and Ver-

boven (2019) is that when it comes to estimation, I exploit cross-sectional variation

across geographic markets in my data, in addition to time-series variation, to help iden-

tify the key parameters of the model. This cross-sectional variation also allows me to

use a different instrumental variable strategy to account for endogenous prices in the

model.

The estimating equation I specify is derived from recent econometric work by Scott

(2014) and Kalouptsidi, Scott, and Souza-Rodrigues (2021) who develop methods for

estimating structural dynamic discrete choice models using linear regression techniques,

which they dub “Euler Equations in Conditional Choice Probabilities” (ECCP) esti-

mators. The advantage of their approach over previous full information approaches

in the dynamic discrete choice literature (for example, Rust 1987 and Gowrisankaran

and Rysman 2011) is that it does not require the researcher to specify the evolution of

market-level state variables in the model. This aspect of their estimation approach is

crucial in my application, because it would be unrealistic to credibly model households’

expectations about the evolution of government incentives for residential PV systems

over time. However, by making the relatively limited assumption that households have

rational expectations, Kalouptsidi, Scott, and Souza-Rodrigues (2021) show that it is

possible to estimate dynamic discrete choice models using the ECCP method without

imposing additional assumptions.
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3.2 Adoption Decision

I model households’ PV adoption decisions using a dynamic discrete choice model.

Where j = 1, ..., J indexes solar systems by capacity, t = 1, ..., T indexes time, and

m = 1, ...,M indexes geographic markets defined by electric utilities’ service areas. To

simplify the discussion that follows I drop the market index.

At each time t, household i decides whether to adopt a PV system j = 1, ..., J

now or wait until later to adopt, which I denote by j = 0. If the household purchases

at time t, it exits the market, otherwise it has the option to purchase a system at

a later date. In the meantime, a household that waits to adopt continues to pay its

local provider for electricity usage. Note that for simplicity the model ignores that

households’ adoption behavior may reflect a joint adoption/electricity consumption

decision. Also for simplicity, I assume that households do not have the option to

replace their systems later—this assumption seems reasonable given that I observe

households adoption decisions over a ten year period and the likelihood of a household

requiring a system replacement during that period is de minimis. The household makes

its adoption decision given its utility from adopting a system today and its expected

discounted utility from adopting a system in the future.

3.2.1 Households’ Utility from Adoption

The indirect flow utility of household i from adopting system j at time t is a function of

the system’s capacity (captured by a product specific constant βj), net present cost of

installation pjt(δ), an unobserved product characteristic ξjt, and an idiosyncratic error

εijt,

uijt = βj − αpjt + ξjt + εijt = ūjt + εijt. (1)

Here I assume households have homogeneous preferences for product characteristics,

in which case ūjt represents the mean utility households obtain from adoption. Later

on in the paper, I relax this assumption and allow households to have heterogenous

preferences that vary across observable demographic characteristics.

3.2.2 Net Present Cost of Installation

The “price” term in households’ utility function pjt, the net present cost of installation,

depends upon the upfront installation cost pIjt, households’ discount factor δ (which is

also homogenous), and both federal and state upfront and long-term incentives,
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pjt = pIjt − (0.3 · pIjt)︸ ︷︷ ︸
Fed. Tax Credit

−Rjt − (1− 0.22) ·min
{

[0.15 · (pIjt −Rjt)], 1000
}︸ ︷︷ ︸

MA Tax Credit

(2)

−
24∑
τ=0

δτ · (1− d)τ · gejt · pet+τ︸ ︷︷ ︸
Net Metering

−
24∑
τ=0

δτ · (1− d)τ · gejt · psct+τ︸ ︷︷ ︸
SREC Revenue

.

During the period of analysis 2008–2018, the federal solar investment tax credit

reduces PV system owners’ taxes by 30% of the upfront installation cost. Through

various rebate programs, Massachusetts state offers capacity subsidies to residential

adopters Rjt, as well as the RETC which accounts for 15% of the upfront installation

cost (net of capacity subsidies) up to a maximum of $1,000 (this tax credit is subject

to federal income tax, which I assume is 22%). The upfront installation cost minus the

sum of federal and state tax credits as well as capacity subsidies reflects the upfront

installation cost net of upfront incentives.

As previously described, in addition to upfront incentives, Massachusetts imple-

mented two long-term incentive programs to encourage residential solar adoption—the

net metering program and the creation of a market for SRECs. In order to calculate the

net present value of each incentive program to adopters, I assume that all PV systems

have a 25-year lifespan, all systems’ electricity generation depreciates at a rate of d each

year (which I set equal to 1%), and households discount future benefits at a rate δ.15

The present value of the net metering program and avoided future electricity costs

to a household adopting system j at time t is given by,

PVnm
jt =

24∑
τ=0

δτ · (1− d)τ · gejt · pet+τ , (3)

where gejt is the estimated production of electricity (kWh) by system j at time t and

pet+τ is the estimated real price of electricity ($/kWh) at time t + τ . Recall that the

household’s outside option includes continuing to pay its utility for electricity, which

is why the expression above represents both the present value of net metering and the

present value of avoided future electricity costs.

The present value of the SREC program to a household adopting system j at time

t is given by,

PVsc
jt =

24∑
τ=0

δτ · (1− d)τ · gejt · psct+τ , (4)

15Burr (2014) and several industry sources suggest that 25 years is an appropriate assumption for
the lifespan of a solar system. Additionally, MassCEC Residential Guide to Solar Energy suggests that
by year 20 a solar system should generate at least 80% of its original electricity output. At d = 1%
after 25 years, generation is approximately 80% of its original output.
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where again gejt is the estimated production of electricity (kWh) by system j at time t

and psct+τ is the estimated real price of solar renewable energy certificates ($/kWh) at

time t+ τ .

Taking all incentives into account pjt, the net present cost of installation, is the

upfront installation price net of all upfront and future incentives.

3.2.3 Households’ Utility from Waiting to Adopt

The household’s option value of waiting to adopt at time t,

vi0t = u0t + δEt max {vi0t+1, ui1t+1, ..., uiJt+1} = u0t + δEt[Vit+1], (5)

is the sum of u0t, the flow utility from not adopting this period, and δEt[Vit+1], the

discounted expected value of delaying the adoption decision until next period.

Assuming that εijt is i.i.d. extreme value type I, the ex-ante value of waiting is the

closed-form logsum expression,

V̄t+1 = 0.577 + log
(

exp (v̄0t+1) +
J∑
j=1

exp (ūjt+1)
)

(6)

where the constant, 0.577, Euler’s gamma, is the mean of the standard extreme value

type I distribution.

3.2.4 Households’ Choice Probabilities

Assuming households maximize their utility, the probability that a household adopts

system j at time t is given by,

sjt =
exp (ūjt)

exp (v̄0t) +
∑J

j=1 exp (ūjt)
, (7)

the standard multinomial logit probability formula. In order to take the model to the

data, following Berry (1994), I equate these probabilities to the aggregate market shares

of PV systems in each year.

3.3 Estimating Equation

In order to derive a closed-form estimating equation, I follow techniques developed in

Scott (2014) and Kalouptsidi, Scott, and Souza-Rodrigues (2021).

I assume that households have rational expectations about the future benefits of

adopting PV. Specifically, I assume the ex-ante value function V̄t+1 equals the expected

14



value function Et[V̄t+1] plus a prediction error ηt. Rearranging this relationship, I

represent the expected value of delaying the adoption decision as,

Et[V̄t+1] = V̄t+1 − ηt. (8)

Then, assuming that households’ one-period-ahead predictions about the value of

waiting are on average correct (Et[ηt] = 0 i.e. that households have rational expecta-

tions), the option value of waiting to adopt at time t can be written as,

v̄0t = u0t + δ
(
0.577 + log

(
exp (v̄0t+1) +

J∑
j=1

exp (ūjt+1)
)
− ηt

)
. (9)

Hotz and Miller (1993) show how to write V̄t+1 in terms of conditional choice prob-

abilities (CCPs), which yields a convenient closed-form estimating equation.

Take the CCP of a household adopting any arbitrary system j at time t + 1, say

j = 1,

s1t+1 =
exp (ū1t+1)

exp (v̄0t+1) +
∑J

j=1 exp (ūjt+1)
. (10)

Taking the log of both sides and rearranging, the logsum expression is equal to the

flow utility from adopting system j = 1 minus the log share of adopting system j = 1,

log
(

exp (v̄0t+1) +
J∑
j=1

exp (ūjt+1)
)

= ū1t+1 − log (s1t+1). (11)

Substituting this expression into equation (9) and normalizing u0t + δ0.577 = 0, the

option value of waiting to adopt becomes,

v̄0t = δ
(
ū1t+1 − log (s1t+1)− ηt

)
. (12)

One can think about this expression as essentially proxying the value of the waiting

to adopt as the discounted utility the household receives from adopting system j = 1 in

the following period minus the household’s prediction error, ηt, and an additional term,

log (s1t+1), that adjusts for the fact that adopting j = 1 in the next period may not be

optimal (Arcidiacono and Miller 2011 refer to this as the “correction” term). It should

be noted here that it is possible to use any terminal adoption decision j = 2, ..., J in

place of j = 1 as a “proxy” for the value of the outside option.

Now using Berry’s (1994) market share inversion to formulate a discrete choice

model of aggregate demand, we can derive an estimating equation given the indifference

15



condition,

log
(sjt
s0t

)
= ūjt − v̄0t, (13)

log
(sjt
s0t

)
=
(
βj − αpjt + ξjt

)
− δ
(
β1 − αp1t+1 + ξ1t+1 − log (s1t+1)− ηt

)
. (14)

In the standard static multinomial logit demand model, the indirect utility from the

the outside option is typically normalized to zero, v̄0t = 0, and so the second term in

equations (13 and 14) disappears. However, in this case because the household faces a

dynamic choice we subtract the option of waiting to adopt.

Grouping like terms and defining the econometric error term ejt = ξjt− δξ1t+1 + δηt,

the estimating equation becomes,

log
(sjt
s0t

)
=
(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ δ log (s1t+1) + ejt. (15)

This equation, which looks somewhat like a first-difference equation, is my main esti-

mating equation.

When δ = 0, this equation becomes the standard static demand model, which can

be estimated using OLS or linear IV,

log
(sjt
s0t

)
= βj − αpjt + ξjt.

When δ is known, one can construct a new dependent variable and estimate the

following equation using OLS or linear IV,

log
(sjt
s0t

)
− δ log (s1t+1) =

(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ ejt.

When δ is unknown, because demand is now a nonlinear function of δ, one can

estimate the following equation using nonlinear least squares (NLLS) or nonlinear IV

(NLIV),

log
(sjt
s0t

)
=
(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ δ log (s1t+1) + ejt.

In the estimation section, I estimate versions of the model in which I specify house-

holds’ discount factor prior to estimation and others where I estimate δ jointly with the

other parameters.

4 Data

To analyze households’ adoption behavior and measure their responsiveness to solar

incentives, I combine data on PV system installations from the Massachusetts Clean
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Energy Center (MassCEC)16 with market size and electricity price data from the U.S.

Energy Information Administration (EIA).17 I also refer to the Massachusetts Depart-

ment of Energy Resources (DOER) website18 for data related to SREC prices and other

regulatory information.

4.1 Solar Adoption Data and Sample Selection

MassCEC collects data on the installation and production of renewable energy systems

across the state in its Production Tracking System (PTS).19 The PTS database is used

to evaluate the development of solar industry as well as to track energy production by

systems for SREC reporting purposes (only registered systems are SREC eligible). I

use this data as the basis of my empirical analysis.

The data consists of system-level records including the date the system was installed,

the location (county, city, zip code) of installation, the total upfront installation cost of

the system, the value of any rebates received, and limited information about the owner,

installer and system manufacturer. Importantly for my analysis, the data indicates

whether a system is host owned or third-party owned, whether the owner is a residential,

commercial, industrial, or governmental entity, and which electric utility the owner is

served by.

I focus my analysis on residential, host owned solar system adoption during the

2008–2018 period. My sample consists of 31,637 solar installations of a possible 90,003

installations in Massachusetts from 2001–2018. There are several reasons to restrict

my sample. First, both federal and state solar support changed significantly in 2008.

The federal ITC was extended as part of the governments’ response to the financial

crisis, and Massachusetts greatly expanded net metering with the passage of the Green

Communities Act. Figure 6 shows that solar adoption pre-2008 was relatively limited,

therefore, given the lack of installations before 2008 and the change in the regulatory

regime I find it reasonable to limit the scope of my analysis to the 2008–2018 period.

Of the four major groups of electric utility customers included in the data: (1)

residential, (2) commercial, (3) industrial, and (4) governmental, the residential sector

accounts for over 94% of all installations (approximately 24% of estimated annual solar

generation). While residential customers’ incentives for adoption are arguably similar

to other customers (the purpose is to offset their electricity bills by generating their

own electricity), residential customers face a different set of institutional and regulatory

constraints. For example, individual households’ ability to finance their systems is po-

16https://www.masscec.com
17https://www.eia.gov/
18https://www.mass.gov/orgs/massachusetts-department-of-energy-resources
19https://www.masscec.com/about-pts
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tentially limited compared to larger customers, however, residential customers actually

receive more favorable support from the state because eligibility for the SREC and net

metering programs is limited to smaller capacity PV systems.

During the 2008–2018 period, as rooftop solar gained popularity, installers including

Vivant and SolarCity introduced third-party ownership agreements to further expand

the market to more financially constrained households. These companies offered cus-

tomers the option to rent PV systems for an extended period through solar lease agree-

ments, rather than purchase them outright. Typically these agreements are structured

such that the lease-holders own the system and the rights to any incentives derived

from energy generation until the lease is paid off at which point the household owns

the system. Of the 83,958 residential installations from 2008–2018, 52,321 (62%) are

third-party owned systems. Figure 7 shows the number of host owned and third-party

owned installations and installation cost per kW over time.

While third-party ownership is increasingly common during my period of study,

and measuring the consumer and environmental benefits of the introduction of such

agreements would be interesting to study from a policy perspective, there is no publicly

available data on third-party ownership contracts that I can use to explicitly model

third-party ownership—particularly to capture the effective prices households’ face.

Additionally, as with commercial, industrial, and governmental owners the behavior of

third-party owners is likely to differ from host owners, therefore, I exclude them from

my primary analysis. However, exclusion of third-party owners potentially introduces

sample selection bias due to likely demographic differences between households that are

host owners and households that sign contracts with third-party owners. I hypothesize

that the major difference between these households is that host owners are likely to

be wealthier, and as a result demand for solar panels may be more elastic than I find

in my primary analysis. In a robustness check, I estimate a model that incorporates

the decision to adopt third-party owned systems in a simple manner and obtain similar

estimates to my main results.

In addition to my sample selection criteria, as part of processing the installation data

for analysis, I rely on some guidelines recommended by the Lawerence Berkley National

Laboratory (LBNL) for analyzing the residential solar PV market. Specifically, LBNL

(2019) uses 20kW capacity as a threshold for delineating residential and non-residential

installations and suggests that systems with installation cost per kW of less than $1,000

or greater than $20,000 (in 2018 dollars) are unlikely to be representative of PV solar

prices. Therefore, I exclude any potential “outliers” on these bases.

Table 2 below displays mean and median system capacity, estimated production,

upfront installation cost, and grants/rebates by system size for my final sample of

solar installations. To estimate demand I discretize households’ adoption choices by
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categorizing PV systems into five groups by system capacity and aggregate price and

capacity data based on sample medians. Estimated production and installation costs

increase monotonically with system capacity as expected. Also, means and median are

very close for all variables except rebates (this is because rebates are not distributed

uniformly over time).

Figure 8 displays adoptions, cumulative adoptions, average and median installation

prices, median capacity, and median estimated production by system size over time. In

terms of adoption, initially the smallest capacity [0,4) kW systems are most popular,

however, as installation prices fall more rapidly for larger systems, demand for medium

and large-sized system increases. By 2018 cumulative adoption is largest for [4,6)

kW capacity systems, closely followed by [6,8) kW. Upfront installation prices fall

most rapidly for the largest capacity systems. Time series plots of median capacity

and median estimated production show that capacity-group composition remains quite

constant over time. Figure 9 displays the percentage of installations that receive rebates

and median rebate amounts over time by capacity, which shows that a high percentage

of projects (over 80%) received direct subsidies until 2015. From 2016 onwards almost

no installations received direct subsidies from the state.

4.2 Electricity Price Data

To measure average annual electricity prices for households’ net metering revenues and

avoided electricity costs I rely upon Form EIA-861 data for Massachusetts utilities.20

I collect data from 2008–2018 and calculate the annual average price per kWh for

residential customers by dividing total revenues by total sales for each utility f ,

peft =
Revenueft

Sales (kWh)ft
.

Because the net present cost of installation depends on current and future electricity

prices, I forecast future real electricity prices (adjusting for inflation with the urban CPI)

for each utility using a simple log-linear regression on time, where I include utility-

specific time trends γf and utility fixed effects ρf ,

log (peft) =
F∑
f

γf (Utilityf × Timet) +
F∑
f

ρf + υft.

My forecast of real electricity prices runs from 2019 through 2042, because I assume a

PV system lifespan of 25 years, therefore, a household adopting in 2018 can accumulate

20https://www.eia.gov/electricity/data/eia861/
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net metering revenue and avoid electricity costs through 2042. Regression results are

shown Table 3. Figure 10 displays actual and forecasted electricity prices from 2008–

2042. The coefficients show that on average real electricity prices in Massachusetts grew

between 1.9–6.1% per year from 2008 to 2018, depending on the electric utility. My

forecast suggests that, on average, real electricity prices will increase by over 3.5-fold

in the next 30 years. Whether or not this forecast is realistic is certainly debatable,

however, what this projection implies for my analysis is clear–depending on the degree

to which households discount the future, the net present value of net metering and

avoided electricity costs will likely increase over time because real electricity prices rise

at a substantial rate. In the estimation section, I specify alternative growth paths for

electricity prices.

4.3 SREC Incentive Data

To measure households’ current and future benefits from Massachusetts SREC pro-

grams, I refer to the schedule of alternative compliance prices (ACPs) and auction

prices posted on DOER’s website.21 Recall that a household earns a solar certificate

for every 1,000 kWh of energy it generates. Benefits for the SREC I program span

from 2010 to 2025 with 2013 being the last year of enrollment, while benefits for the

SREC II program span from 2014 to 2029 with 2018 being the last year of enrollment.

As previously discussed, SREC market prices are bounded by utilities’ ACPs and fixed

quantity auction prices, which were determined and announced by DOER prior to the

introduction of the programs. I estimate the market price of SRECs, for purposes of

calculating the net present value of SRECs to households’, as the midpoint of the ACP

(price ceiling, psct ) and the auction price (price floor, psc
t

),

psct =
psct + psc

t

2
.

In Figure 11, I plot the schedule of SREC I and II ACPs and auction prices de-

termined by DOER, as well as psct . As with average electricity prices, I adjust SREC

prices for inflation. These are plotted in Figure 12.

4.4 Net Present Installation Costs

Having explained all of the empirical components of the “price” equation, I calculate

the average net present installation cost for each system size over time using average

annual installation prices and incentives, a discount factor of δ = 0.9, and a depreciation

21https://www.mass.gov/service-details/solar-carve-out-and-solar-carve-out-ii-minimum-
standards-and-market-information
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rate of d = 0.01 to illustrate how the effective prices households face evolve over time.

In Figure 13, I plot average discounted net metering revenue and average discounted

SREC revenue over time by system size, and in Figure 14, I plot the average net present

installation cost over time by system size, as well as the breakdown of the net present

installation cost for a [4,6) kW capacity system.

From 2008 to 2013 generally the net present installation cost for all systems is

declining. There’s a large discontinuity from 2008 to 2010 due to the introduction of

the first SREC program, followed by a gradual decrease due to declining installation

costs until 2013. As the rate of decline in upfront installation costs slows, net present

installation costs flatten out from 2013 onwards. Note that prior to the introduction

of the SREC I program, the net present cost of installation for most systems was

greater than zero, indicating that on average early solar adopters could expect a net

loss over the lifespan of their systems, however, from 2010 onwards, on the average

adopting household could expect a net profit over the lifespan of its system due to the

combination of SREC revenue and net metering revenue/avoided electricity costs.

Focusing on the breakdown of the average net present installation cost for a [4,6) kW

capacity system, notice that SREC revenues are the largest incentive for system owners,

followed by net metering revenues/avoided electricity costs which increase over time

(driven by the assumption of real electricity price growth). Capacity subsidies by the

state are initially large but decline quickly, the federal tax credit declines proportionally

to upfront installation prices, and the Massachusetts tax credit remains fixed since 15%

of the average upfront installation price almost always exceeds the $1,000 maximum

state tax credit.

4.5 Aggregate Data

In order to estimate my model I aggregate my installation-level data within markets

and years. I define markets as utility service areas, where I group municipal utilities

together (see Figure 4). While not always geographically contiguous in Massachusetts,

utilities’ services areas constitute appropriately defined markets because electric util-

ities are regulated firms that earn rate of return revenues and charge uniform prices

to specified classes of consumers i.e. residential, commercial, etc. Moreover each IOU

in Massachusetts has varying capacity for solar PV connections to the grid based on

its specific RPS, therefore, aggregating installations across “utility markets” seems rea-

sonable in my application given the utility-specific rules governing solar installations.

I aggregate installations for each year because a finer time period would result in zero

adoptions in many periods due to sparsity of adoptions over time, across markets.22

22De Groote and Verboven (2019) likewise deal with relatively sparse data.
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Table 4 displays the number of residential, host owned solar installations during the

2008–2018 period by utility, as well as the number of residential customers in 2008.

The aggregate market share for each solar system j in year t for market m is defined

as,

sjtm =
qjtm
Mtm

,

where qjtm is the number of installations and Mtm is the size of market m in year

t. Because I assume adoption is a terminal choice, the market size evolves over time

according to,

Mtm = Mt−1m

(
1−

J∑
j=1

sjt−1m

)
.

To compute market size and shares using my data, I define M1m as the number

of residential customers in 2008 in each “utility market” m. Due to the sparsity of

installation data, for some market-years qjtm = 0. In these cases I set qjtm = 1e−6 to

avoid the common zero market share problem in logit demand models.

I calculate aggregate prices in each market-year using median upfront installation

costs and median incentives. Similar to the zero market share problem, when I aggre-

gate prices across markets, if the are no installations in a given market-year, then I

don’t observe price. In these instances I replace missing prices with average aggregate

installation prices across other markets. This interpolation introduces measurement

error into my econometric model and potentially leads to attenuation bias with respect

to the price coefficient. Another measurement concern is that installation prices are

household-specific as opposed to fixed prices offered by installers—again this may bias

the price coefficient towards zero. However, the inclusion of an instrument for price

in the model should address this measurement error. Finally, I also use median esti-

mated production as an estimate for aggregate energy generation in each year-market

(again missing data is replaced with the average across other markets). Table 5 displays

summary statistics of the sample I use in my estimation.

5 Identification

5.1 Price Endogeneity

The installation price of PV systems is endogenous in the estimating equation because

prices are determined in equilibrium by supply and demand, E[pjtmejtm] 6= 0. As a

result estimation of the demand equation using OLS or NLLS will ignore any unob-

servable quality correlated with price resulting in a downward biased estimate of α,

implying that demand is less elastic than in reality. To address this source of endogene-

22



ity, I use an instrumental variable for price that plausibly satisfies the orthogonality

condition E[zjtmejtm] = 0. Following Hausman (1996) and Nevo (2000), I use average

prices (in this case average upfront installation prices) across other markets (n 6= m)

to instrument for pjtm.

While this instrument has been criticized because common variation in prices may

be driven by demand-side factors such as advertising (see Bresnahan 1996), I argue that

in this case common variation in prices is mostly explained by variation in supply as

opposed to demand. As discussed previously, solar PV prices have fallen dramatically

over time due to technological change that has made the cost of producing panels much

cheaper. Therefore, variation in prices over time mostly reflects decreases in the cost

of production. To the extent that prices are correlated across markets, I hypothesize

that most of this correlation is due to common shifts in supply. Furthermore, since

the markets I study are geographically close and served by the same firms, variation

in transportation costs and other factor prices are likely limited. It follows then that

differences in price across markets are mostly explained by differences in demand.

However, it is possible that a portion of the correlation in prices is due to common

demand shocks as a result of increasing awareness of solar panels across Massachusetts

over my period of study. Because I suspect variation in prices over time is more likely

driven by supply than demand and variation in prices across markets is more likely

driven by demand than supply, I test which source of variation in prices is larger by

decomposing this variation into between market variation and within market variation.

If costs are similar across markets, but falling over time, and common supply shocks

explain the majority of variation in price, then within market variation in price should

be greater than across market variation. These variance statistics are displayed in Table

6.

As expected, within market variation is larger than between market variation, mean-

ing that most of the overall variation in price is due to changes over time, which I argue

is most plausibly explained by shifts in supply. This exercise certainly doesn’t prove

that my instrument satisfies the exogeneity condition, but it does give me some confi-

dence that the correlation in prices across markets is more likely explained by common

supply shocks than by common demand shocks.

5.2 Discount Factor

Since demand for solar systems depends on households’ discount factor δ, in addition to

instrumenting for price in the nonlinear IV estimator, it is also necessary to include an

instrument to identify δ (otherwise the number of parameters would exceed the number

of instruments). Other applications of dynamic discrete choice models have found that
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it is difficult to identify δ, so most studies typically end up specifying a particular value

(e.g. δ = 0.9). For example, in his seminal study on bus engine replacement Rust

(1987) compares how his model fits the data using different values for the discount

factor. Estimating δ is empirically challenging because identification requires data

on individuals’ future payoffs that varies independently from current payoffs, which

usually isn’t available. To illustrate the point, imagine designing the ideal experiment to

identify the degree to which individuals discount future income. In such an experiment,

one would want to hold constant current payoffs while randomizing future payoffs. One

could also randomize current payoffs, however, the relevant variation in the data that

would allow the researcher to identify individuals’ average discount factor is the relative

difference between current payoffs and future payoffs.

As De Groote and Verboven (2019) point out, because solar subsidies vary across

time independently from upfront installation costs, it is possible to identify δ in this

context by using variation in the difference between upfront installation costs and future

subsidies across time (and in my case markets) in the data. In addition to using this

variation in the data to identify the discount factor, De Groote and Verboven (2019) use

the price of green energy certificates in future periods as an instrument. Because future

REC prices should be uncorrelated with upfront installation prices, but are correlated

with the future benefits of adopting solar, they are plausibly an appropriate instrument

for households’ discount factor. Similarly, in my application I can use variation in the

difference between upfront installation costs and future subsidies across time (as well

as across markets) and use the price of SRECs in future periods to identify δ.

6 Estimation

In this section, I estimate demand for PV systems using the dynamic adoption model

previously outlined under several different assumptions and discuss the results. First, I

estimate the model taking households’ discount factor as given using linear regression

techniques. I show (1) how different assumptions about δ affect the estimates and (2)

the importance of treating price as endogenous in the model. Second, I estimate δ

along with the other demand parameters with nonlinear methods and use variation in

the difference between households’ current and future payoffs in the data, as well as

future SREC prices as an instrument to identify δ. Third, I perform some robustness

checks to test the sensitivity of households’ price sensitivity and discount factor to

various assumptions in the estimation. Forth, I extend the model to allow for observable

heterogeneity among households located in different municipalities. Using demographic

data on local municipalities I construct and add municipal-level moments to the model,

which I estimate using generalized method of moments (GMM).
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6.1 Linear Estimation and Results

As described in the model section, when δ is known it is straightforward to estimate

the following regression equation using OLS or linear IV,

log
(sjtm
s0tm

)
− δ log (s1t+1m) =

(
βj − δβ1

)︸ ︷︷ ︸
β̃0+1(j 6=1)β̃j

−α
(
pjtm − δp1t+1m

)
+ ejtm,

where in practice I estimate the above equation using a constant term β̃0 and alternative-

specific constants β̃2, ..., β̃5, which can then be manipulated to identify what I call the

“normalized estimates” β1, ..., β5, corresponding directly to the parameters in house-

holds’ indirect utility function.

I estimate the above equation using OLS and 2SLS under two assumptions about

household behavior. First, I assume households are completely myopic δ = 0 (in which

case the equation reduces to the standard static logit demand model). Second, I as-

sume that households are relatively forward-looking δ = 0.9. This discount factor is

equivalent to an annual interest rate r ≈ 11% which still implies a substantial degree of

myopia when compared with the average rate at which households can borrow (perhaps

3%).

In the first-stage of the linear IV estimator, I estimate the following regression

equation,

pIjtm = φ0 + φ1p
I
jtn + ρj + ωjtm,

where pIjtn is the average upfront installation price of system j at time t across markets

n 6= m and ρj are capacity dummies. Table 7 displays the results of the first-stage

regression. Because I regress installation prices on average installation prices across

other markets, as expected instrument power isn’t an issue here (F-Statistic > 10).

Table 8 reports the linear demand equation estimates. Comparing the OLS and IV

estimates, holding δ constant, the Hausman-Nevo instrument shifts the price coefficient

α in the expected direction. However, as δ increases demand seems to become less

elastic, which is counter to previous results in the literature estimating dynamic demand

systems. In particular, Gowrisankaran and Rysman’s (2012) suggest that applying

static demand to durable goods will tend to lead to estimates of the price coefficient

biased toward zero. However, unlike in their application, in this case, the price, or net

present cost of installation depends on δ, so as δ rises, pjtm shrinks. Therefore, in fact my

results are consistent with Gowrisankaran and Rysman’s (2012) results and theoretical

intuition that accounting for dynamic consumer behavior should yield more elastic

demand estimates. Finally, the R-squared statistics show that the dynamic demand

model rationalizes households’ adoption behavior slightly better than the static model.
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6.2 Nonlinear Estimation and Results

When δ is unknown, demand is a nonlinear function of δ, therefore, I use nonlinear

least squares (NLLS) and nonlinear IV (NLIV) to estimate,

log
(sjtm
s0tm

)
=
(
βj − δβ1

)
− α

(
pjtm − δp1t+1m

)
+ δ log (s1t+1m) + ejtm.

To estimate the demand equation using NLLS, I search for the vector of parameters

θ = (βj, α, δ) that minimizes the objective function,

Q(θ) =
1

N
(e′e),

where e is the vector of residuals from the demand equation.

To estimate the demand equation using NLIV (or GMM in the just-identified case),

I search for the vector of parameters θ that minimizes the objective function,

Q(θ) = (e′Z)W(Z′e),

where again e is the vector of residuals from the demand equation, Z is a matrix

of instruments, and W = (Z′Z)−1 is the optimal GMM weighting matrix in the just-

identified case.

In both procedures I search for θ using quasi-Newton optimization (I derive analyt-

ical expressions for the gradient of each objective function in the appendix). The main

complication in estimation is that the net present cost of installation depends on the

value of δ (here I drop the market subscript for convenience),

pjt = pIjt − (0.3 · pIjt)︸ ︷︷ ︸
Fed. Tax Credit

−Rjt − (1− 0.22) ·min
{

[0.15 · (pIjt −Rjt)], 1000
}︸ ︷︷ ︸

MA Tax Credit

−
24∑
τ=0

δτ · (1− d)τ · gejt · pet+τ︸ ︷︷ ︸
Net Metering

−
24∑
τ=0

δτ · (1− d)τ · gejt · psct+τ︸ ︷︷ ︸
SREC Revenue

.

Because pjt is a function of δ, I need to update pjt as δ changes. Defining the upfront

installation price net of upfront incentives as,

p̃I1t ≡ pIjt − (0.3 · pIjt)−Rjt − (1− 0.22) ·min
{

[0.15 · (pIjt −Rjt)], 1000
}

a compact way to calculate the net present installation costs of systems j ∈ {1, ..., 5},
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at time t is,


p1t

p2t

p3t

p4t

p5t

 =


p̃I1t
p̃I2t
p̃I3t
p̃I4t
p̃I5t

−

ge1t
ge2t
ge3t
ge4t
ge5t

◦

pet pet+1 . . . pet+24

pet pet+1 . . . pet+24

pet pet+1 . . . pet+24

pet pet+1 . . . pet+24

pet pet+1 . . . pet+24





1

δ(1− d)

δ2(1− d)2

...

δ24(1− d)24


−


ge1t
ge2t
ge3t
ge4t
ge5t

◦

psct psct+1 . . . psct+24

psct psct+1 . . . psct+24

psct psct+1 . . . psct+24

psct psct+1 . . . psct+24

psct psct+1 . . . psct+24





1

δ(1− d)

δ2(1− d)2

...

δ24(1− d)24


where ◦ represents element-wise multiplication (Hadamard product).

Table 9 reports the nonlinear demand equation estimates. The major difference

between the NLLS and NLIV results is the estimate of the discount factor, which is

relatively low for NLLS and relatively high for NLIV. Recall that δ is identified using

variation in the difference between households’ current and future payoffs in the data,

as well as future SREC prices in the case of NLIV. The NLLS estimates suggest that

variation in the data can somewhat help identify δ, but the instrument increases the

estimate of households’ discount factor significantly. Correcting for price endogeneity

using NLIV yields a similar estimate of the price coefficient (in fact, demand actually

appears to be less elastic using NLLS), however, again recall that as δ increases in the

linear estimation the price coefficient shrinks, therefore, without holding δ constant

it is difficult to compare coefficients across models. Taken altogether, the baseline

linear and nonlinear estimates suggest that households’ PV adoption behavior is better

characterized by a dynamic rather than a static model.

Compared to De Groote and Verboven (2019), I find that households are more

myopic about the future benefits of solar in my setting. Converting my estimate of

households’ discount factor into the annual interest rate at which households’ would

need to be compensated in order to invest in long-term solar benefits, r̂ = 1

δ̂
−1 ≈ 23%, I

compare our results. They estimate an equivalent annual interest rate of approximately

15% (or an annual discount factor of 0.87), which implies that households in Belgium

were more forward looking about the future benefits of solar than their Massachusetts

counterparts. One plausible explanation for this result is that SREC prices in Belgium

were set by the government in a top-down manner, whereas in Massachusetts SREC

prices are determined by the market mechanism established by DOER. While this mar-

ket mechanism may have generated efficiency in the allocation of SRECs, this may have

come at the cost of increased uncertainty for households choosing whether or not to

adopt PV. This increased uncertainty about the riskiness of PV as a long-term invest-

ment may be reflected in the lower estimate of households’ discount factor. Another,

potential explanation is that the relative pervasiveness of PV adoption in Belgium re-

flects a greater acceptance and awareness of green technologies both as a matter of

public policy and culturally in Europe. Of course besides institutional and cultural
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differences across settings, differences in identification strategies may also explain why

I find that Massachusetts households are more myopic.

6.3 Robustness Checks

In this section, I subject the NLIV estimates, my preferred specification of the structural

model, to a series of robustness checks. The objective of these exercises is to test the

sensitivity of the model, in particular the key parameters α and δ, to some of its

underlying assumptions. Specifically, I investigate how my assumptions about market

size, differences across geographic markets, the evolution of electricity prices and SREC

prices over time, and specification of the outside option affect these parameters. I find

that most of these assumptions have limited impact on these estimates and do not

change my main results or the policy implications of these results. In an additional

section in the appendix, I extend the model to allow households to adopt third-party

owned PV systems—again, this extension has a limited impact on my main findings.

6.3.1 Market Size Robustness Check

One potential concern in the estimation is that identification of the discount factor in

the empirical model partially depends on the difference in the number of households

who choose the outside option and those who choose to adopt PV (or the difference

between the aggregate share of households waiting to adopt and the shares of those who

adopt). Therefore, poor estimation of the market size for PV systems will potentially

lead to biased estimates of households’ discount factor. Since I use the total number

of residential electric utility customers in 2008 as an estimate of the initial market size

in each geographic market, it is likely that I overstate the market size for PV systems,

because some households may not have the ability to install solar panels depending

upon their living situation (for example if they rent an apartment) or due to local

zoning regulations or solar panel restrictions. If the market size is overstated, then it

is possible that estimates of the discount factor are biased downwards, since in order

to rationalize the number of households who choose the outside option, the estimated

discount factor will decrease thus suggesting that households are less forward looking

about the future benefits of adopting solar than in reality.

To test the sensitivity of my main empirical results to the potential overstatement

of market size, I re-estimate the NLIV specification using different initial estimates of

the market size in each geographic market; specifically, I use 10% of the total number of

residential electric utility customers in 2008 (see Table 10). The results show that nei-

ther the discount factor nor any of the other parameters of the model are meaningfully

impacted by the reduction in market size.
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6.3.2 Utility Market Fixed Effects Robustness Check

Unobservable institutional differences in PV installation policies and norms across elec-

tric utilities, as well as demographic variation that might affect adoption behavior across

utility markets, may be correlated with PV installation costs and electricity prices. As

a result, omission of these factors could result in inconsistent estimates of households’

price sensitivity and discount factor.

To test the sensitivity of my main specification to unobservable variation across util-

ity service areas, I estimate NLLS and NLIV specifications that include utility market

fixed effects. These results are displayed in Table 11. I find that the inclusion of utility

market fixed effects has essentially no impact on the estimates of the key parameters of

the model, suggesting that time invariant unobservable differences in PV installation

policies and norms, as well as demographic differences, (at least across utility service

areas) are not a threat to identification. Additionally, note that both the NLLS and

NLIV estimates are essentially the same as their original counterparts, which suggests

that the Hausman-Nevo IV strategy for identifying the price coefficient is not sensitive

to the inclusion of market fixed effects.

6.3.3 Sensitivity to the Magnitude of Future Benefits

In the structural model, a household’s decision to invest in PV today depends upon the

net present cost of installation, which includes the upfront installation price and the

present value of the future stream of benefits (including the avoided cost of electricity

and revenues from the SREC program) over the lifespan of the system. In estimation the

key parameters of the model, α and δ, are jointly identified by variation in the difference

between current and future net installation costs i.e. the relative magnitude of pI to

both pe and psc. As a result, these key parameters may be sensitive to assumptions

about the magnitude of these benefits. Below, I analyze the robustness of my main

specification to these assumptions.

6.3.4 Electricity Price Sensitivity

Because the dynamic PV adoption model takes into account households’ future elec-

tricity costs, it is necessary to obtain data on the electricity prices that households face

in each utility service area as well as estimates of these prices spanning into the future.

In the data section, I describe the baseline log-linear regression I use to forecast future

electricity prices, which results in annual growth rates in prices of 1.9–6.1%. Because the

structural model relies upon a forecast of future electricity prices, a potential concern

is that such a forecast may be unreliable and/or unrealistic and may not appropriately

capture households’ expectations of future prices when they are choosing whether or
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not to adopt solar panels, and this misspecification may lead to biased estimates of the

model’s key parameters. In order to assess the sensitivity of my main parameter esti-

mates to the specification of future electricity prices, I specify two alternative growth

paths—a “linear price path” and a “no growth price path.” Figure 15 displays the two

alternative price trajectories. The linear growth path, which is derived from a simple

linear regression of price on utility-specific time trends, results in generally lower elec-

tricity prices than the log-linear forecast during the relevant period. The no growth

path assumes that from 2018 onward, electricity prices remain constant at their 2018

levels.

Tables 12 and 13 display estimates of the main structural model under the “linear

growth path” and “no growth path” scenarios, respectively. In each case, the key

parameter estimates are extremely similar to the main specification, demonstrating a

lack of sensitivity to a wide range of possible electricity price forecasts.

6.3.5 Solar REC Price Sensitivity

As previously discussed, I do not directly observe equilibrium prices in the market for

solar renewable energy certificates (SRECs). Instead, I approximate these prices using

the effective upper and lower bounds of prices (or effective price ceiling and price floor)

in the market, set annually by DOER. The effective upper bound or price ceiling is

electric utilities’ alternative compliance price (ACP), and the effective lower bound or

price floor is the SREC last chance quantity auction price. In my main specification, I

use the midpoint of these prices as an estimate of market clearing SREC prices,

psct =
psct + psc

t

2
.

In order to test the sensitivity of my main specification to this approximation of equilib-

rium SREC prices, I re-estimate this specification using either the series of upper bound

prices or lower bound prices as alternative approximations for the series of equilibrium

prices. These results are displayed in Tables 14 and 15.

Using the lower bound, quantity auction price series, as an approximation of equi-

librium SREC prices results in a price coefficient of -0.21 and a discount factor of 0.97.

Using the upper bound, alternative compliance price series, an as approximation of

equilibrium SREC prices results in a price coefficient of -0.52 and a discount factor

of 0.30. Both price coefficient estimates are within the 95% confidence interval of the

main specification’s point estimate ([-0.62, -0.02]), while only the discount factor of the

specification using the lower bound price series lies within the 95% confidence interval

of the main specification’s point estimate ([0.43, 1.19]).

This robustness analysis reveals more sensitivity to assumptions about the magni-
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tude of SREC prices than assumptions about the magnitude of electricity prices, which

is likely driven not only by the fact that SREC incentives are larger but also by dif-

ferences in temporal variation. SREC prices are declining over time, while electricity

prices are increasing. Moreover, SREC benefits in Massachusetts exhibit kinks or dis-

continuities as the different phases of the program begin and end, whereas electricity

prices vary more continuously over time. These discontinuities in the SREC incentives

are helpful in identifying households’ price sensitivity and discount factor, because the

variation in the difference between upfront costs and long-term benefits is large between

periods when these discontinuities occur.

This exercise also sheds light on the identification of the key parameters of the

model. With lower overall SREC prices, in order to rationalize households’ observed

adoption decisions, households must be less price sensitive and more forward looking

(smaller α, larger δ), because they are paying relatively more upfront and receiving a

smaller stream of future benefits. With higher overall SREC prices, the opposite is true,

households must be more price sensitive and less forward looking (larger α, smaller δ)

in order to rationalize their observed adoption decisions.

6.3.6 Alternative Outside Options Robustness Check

As discussed in the model section, Hotz and Miller (1993) show that it is possible to

represent the value of the outside option in dynamic discrete choice models in terms

of CCPs. Specifically, in this model it is possible to use any arbitrary future termi-

nal adoption decision as a “proxy” for the value of the outside option. In my main

estimation I use j = 1, however, in practice I could have chosen any other alternative

j 6= 0. De Groote and Verboven (2019) acknowledge this issue and develop a creative

robustness check, which I employ here as well. Because any one of the terminal adop-

tion decisions could be used to “proxy” for the value of the outside option, they suggest

using all alternatives to estimate the model in a GMM framework. In this framework

each parameter of the model is over-identified.

More specifically, if k corresponds to the terminal alternative used in the model to

“proxy” for the value of waiting to adopt, a more general estimating equation is,

log
(sjtm
s0tm

)
=
(
βj − δβk

)
− α

(
pjtm − δpkt+1m

)
+ δ log (skt+1m) + ejtm.

In a GMM framework it is possible to estimate the model using all 5 terminal

adoption decisions k = {1, ..., 5} by forming moment conditions for each alternative
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and stacking them together,

g(δ, β, α) =


Z′1e1(δ, β, α)

Z′2e2(δ, β, α)

Z′3e3(δ, β, α)

Z′4e4(δ, β, α)

Z′5e5(δ, β, α)

 ,

where Zk and ek represent the set of instruments and residuals that correspond to

alternative k.

Then to find the optimal parameter values, minimize the GMM objective function,

Q(θ) = g(θ)′Wg(θ),

where W is a block diagonal matrix, where each block contains the matrix (Z′kZk)−1.

The results of this robustness check are displayed in Table 16. First, notice that

the estimated discount factor is smaller (0.676) but still reasonably close to my main

estimate (0.811). Second, the estimated price coefficient is almost identical to the main

results. Finally, notice that the parameters are more precisely estimated because of the

inclusion of additional moment conditions.

6.4 Heterogeneity Among Households

In this section I extend the model to allow for heterogenous preferences among house-

holds. Modeling heterogeneity among households is potentially important for two main

reasons in this setting. First, the standard multinomial logit model may generate unre-

alistic substitution patterns within PV system choices due to the IIA property, whereas

a mixed logit can generate more realistic substitution patterns. Second, allowing for

heterogeneity among households can help explain why many households choose not to

adopt solar panels during my period of study. If households have homogenous pref-

erences, then all variation among households must be rationalized by variation in εijt.

However, if certain types of households are unlikely to ever adopt solar panels and these

types are correlated with observable characteristics, then the inclusion of demographic

data can allow the model to better explain adoption behavior. Additionally, if certain

households are likely to be “never adopters”, then ignoring heterogeneity among house-

holds may lead to inconsistent estimates of households’ price sensitivity and discount

factor.

I allow households located in different submarkets, in this case across 345 of Mas-

sachusetts’ 351 municipalities, to have differing preferences for PV systems. The model
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is similar to adding micro-moments to the “BLP” demand system, as in Berry, Levin-

sohn, and Pakes (2004) and Petrin (2002), however, in this case I rely on municipal-level

demographic data to identify heterogeneity among households, as opposed to using ran-

dom coefficients to model unobservable heterogeneity as well as demographics to model

observable heterogeneity. Although it is possible to include random coefficients in a dy-

namic demand model, for example see Gowrisankaran and Rysman (2012) and Conlon

(2012), the researcher must specify how consumer preferences evolve over time in the

model, which requires specifying the entire state space of the model. Instead, relying

upon only demographic data to identify heterogeneity avoids having to make assump-

tions about the evolution of preferences and other state variables in the model such as

PV prices and subsidies, allowing me to estimate the model using the ECCP method

(De Groote and Verboven (2019), Kalouptsidi, Scott, and Souza-Rodrigues 2021).

Suppose household i’s flow utility from adopting system j at time t is given by,

uijt = ūjt + µijt + εijt, (16)

where ūjt corresponds to the mean utility each household receives from adopting and

µijt represents the component of utility that varies over each household.

Assuming that households located in the same municipality ` have similar demo-

graphic characteristics, let uijt be the flow utility each household i ∈ ` obtains from

adopting system j in time t, where variation in preferences across municipalities depends

upon certain demographic characteristics; in this case, average income, population den-

sity, and voting share for the democratic party,

uijt = βj − αpjt + ξjt︸ ︷︷ ︸
ūjt

+λIj inc` + λPj pop` + λVj vote`︸ ︷︷ ︸
µ`jt

+εijt. (17)

Each demographic characteristic is interacted with system capacity to flexibly capture

heterogeneity among households. I choose these particular demographic characteristics

based on the existing residential solar literature and given the likely importance of each

characteristic to households’ choice of PV system. First, residential PV systems are a

new, relatively expensive technology that are more likely to be adopted by high-income

households. Second, households in more densely populated urban areas are less likely

to adopt large capacity systems due to property size constraints. Third, given the

politicization of climate policy in the U.S., I expect PV systems to be more popular in

democratic-leaning municipalities, and moreover, peer effects may be stronger among

more politically homogenous households.

Using the ECCP methodology as before to represent the household’s value of waiting

to adopt at time t in terms of the utility of adopting system j = 1 at time t + 1, the
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household’s flow utility from the outside option at time t can be written as,

vi0t = δ
(
β1 − αp1t+1 + ξjt+1 − ηt︸ ︷︷ ︸

ū1t+1

+λI1inc` + λP1 pop` + λV1 vote`︸ ︷︷ ︸
µ`1t+1

− log (s`1t+1)
)
, (18)

then, normalizing the utility from adopting system j at time t relative to the value of

outside option at time t,

uijt − vi0t =
(
ūjt − δū1t+1

)
+
(
µ`jt − δµ`1t+1

)
+ δ log (s`1t+1),

and defining the differences in the mean and variance components of utility as,

ũjt ≡ ūjt − δū1t+1 =
(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ ejt,

µ̃`jt ≡ µ`jt − δµ`1t+1 = (λIj − δλI1)︸ ︷︷ ︸
λ̃Ij

inc` + (λPj − δλP1 )︸ ︷︷ ︸
λ̃Pj

pop` + (λVj − δλV1 )︸ ︷︷ ︸
λ̃Vj

vote`,

the probability that a household in municipality ` adopts system j at time t is,

s`jt(ũ, λ̃) =
exp (ũjt + λ̃Ij inc` + λ̃Pj pop` + λ̃Vj vote` + δ log (s`1t+1))

1 +
∑J

k exp (ũkt + λ̃Ikinc` + λ̃Pk pop` + λ̃Vk vote` + δ log (s`1t+1))
. (19)

With these probabilities, it is now possible to write a log-likelihood function in terms

of the probabilities of adoption s`jt and number of adoptions q`jt (and non-adoptions

q`0t) of each system j at time t in municipality `,

log [L(ũ, λ̃, δ)] =
L∑
`=1

T∑
t=1

J∑
t=0

[q`jt log (s`jt)], (20)

where the mean utilities ũ, demographic-capacity interactions λ̃, and discount factor

δ are parameters to be estimated. A technical detail here is that s`1t+1 also needs to

be estimated since it is not directly observed. I pre-estimate these probabilities in a

first-stage regression using a multinomial logit model that includes product-time fixed

effects and demographic-capacity interactions.

As in the BLP (1995) demand framework, with estimates of households’ mean util-

ities ũjt in hand it is possible to recover preferences for product characteristics by

projecting characteristics onto mean utilities,

ũjt =
(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ ejt. (21)

This equation can be estimated using OLS if prices are thought to be exogenous or by
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linear IV when prices are assumed to be endogenous.

In order to estimate correct standard errors for the parameters of the model, and to

estimate δ (because δ appears in both estimating equations), it is necessary to jointly

estimate equations (19 and 21) using GMM. To obtain moments for equation (19) I

derive the first-order conditions (or scores) of the log-likelihood function with respect

to the parameters—these are municipal-level moments since they are sampled from

municipal-level data. In a GMM framework, setting the expected scores of the log-

likelihood function equal to zero is equivalent to MLE (see Train 2003). The moment

conditions associated with equation (21) are formed as usual by interacting the instru-

ments with the error term—these are market-level moments since they are sampled

from aggregate market-level data.

Stacking all of the moment conditions together,

g(ũ, λ̃, δ, β, α) =


∂ log [L(ũ,λ̃,δ)]

∂ũ
∂ log [L(ũ,λ̃,δ)]

∂λ̃

Z′e(ũ, δ, β, α)

 ,
I form the GMM objective function,

Q(θ) = g(θ)′Wg(θ),

where the weight matrix W is a block diagonal matrix, where the first block contains

weights for the municipal-level moments, and the second block contains weights for the

market-level moments.

In practice, I estimate the model with household heterogeneity using market-level

data and municipal-level data from four of the five utility service areas in Massachusetts.

I exclude data from Unitil because its service area consists of only four municipalities

and this limited variation in adoptions across these municipalities means that many

of the mean utility parameters, ũjtm, associated with Unitil’s geographic market are

not identified. Additionally, I exclude two other municipalities in which no households

adopted PV during the sample period. With market-level data from four utility cov-

erage areas and municipal-level data from 345 municipalities, I estimate the model by

sampling over 200 market-level moments and 17,250 municipality-level moments. Also,

in practice, rather than estimating δ, I set δ = 0.8 based on the results of the main

NLIV specification. While in principle it is possible to estimate households’ discount

factor with household heterogeneity, I find that the estimation routine has difficulty

converging when δ is a free parameter.

The results of the heterogenous demand estimates are displayed in Table 17. First

note that the estimated price coefficient here suggests that consumers are significantly
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less price sensitive than the estimate from the homogenous demand model. This differ-

ence may be driven by the inclusion of income-capacity interactions, and because δ is a

fixed parameter in this model—in any case, the difference is large. Also unlike the ho-

mogenous model, capacity fixed effects increase monotonically with system size. Of the

parameters capturing household heterogeneity, the set of population density-capacity

interactions appear to be the most economically relevant and statistically significant.

The coefficients show that as municipal population density increases, households are

less likely to install larger capacity systems. This is intuitive because property sizes in

less-dense or rural areas tend to be larger than property sizes in more-dense or urban

areas, and homes are further apart allowing sunlight to reach them unobstructed for

more hours per day. Furthermore, urban areas are likely to have a larger proportion of

renters who don’t have the ability to install PV systems. The income-capacity interac-

tions generally show that as average household income rises, the more likely household

is to purchase a larger capacity system, which is again an intuitive result. Finally, the

vote share-capacity interactions show that households in municipalities with a larger

democratic vote share are more likely to purchase PV systems, however, this effect

declines with system size. Again the direction of these effects seem reasonable given

the polarization of climate policy in the U.S. and given that the role political affiliation

plays in households’ financial decisions is likely to shrink as upfront investment rises.

7 Counterfactual Analysis

In this section, I assess how different solar incentive programs affect households’ deci-

sions to adopt PV systems.

In a first counterfactual analysis, I use the homogenous and heterogenous demand

estimates to measure the impact of (1) upfront subsidies, (2) SREC programs, and (3)

net metering program on overall PV adoption in Massachusetts. I also calculate the

amount of consumer welfare generated by each program. I find that upfront subsi-

dies (federal and state tax credits and grants/rebates) had the largest impact on solar

adoption followed closely by the establishment of SREC market and less closely by the

net metering policy. While the benefits Massachusetts households receive through the

long-term incentive programs outweigh the value of upfront subsidies, upfront incen-

tives have a larger effect on adoption, because households discount these future benefits

significantly.

In a second counterfactual analysis, I compare the efficacy of upfront and long-term

solar incentives on a dollar-for-dollar basis by simulating the effects of two hypothetical

incentive programs using my demand estimates. This exercise illustrates the importance

of discounting behavior in the design of subsidy programs.
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In what follows, I describe the implementation of the counterfactuals, describe the

calculation of consumer welfare generated by each program, and discuss the results.

7.1 Implementation

In the first set of counterfactuals, in order to measure the effect of each incentive

program on overall residential adoption, I remove each one at a time and simulate

counterfactual demand. An alternative approach to evaluating the effectiveness of each

incentive program would be to invert this exercise and ask: starting from a baseline of

no incentives—how much would cumulative adoption increase given the introduction of

different incentive programs? I take this alternative approach in the second set of coun-

terfactuals where I simulate the effects of two hypothetical incentive programs. The

first series of counterfactuals measure the marginal contribution of each actual incentive

introduced holding the level of other incentives constant. The second series of coun-

terfactuals measure the marginal contribution of two hypothetical incentive programs

starting from a baseline of no incentives.

It should be noted here that in all counterfactuals, in order to make predictions

with the model, I set the error term in the estimating equation, ejt = 0. An alternative

approach would be to use the demand parameter estimates to back out estimates of ejt,

which could themselves be treated as structural parameters to be held fixed in counter-

factual analyses (such an approach is commonly used in merger simulation in the IO

literature). These product-market-time specific estimates would then be held fixed in

the counterfactual simulations I conduct. However, the issue with that approach here

is that it obfuscates the performance of the model in predicting actual household adop-

tion (êjt is the difference between actual and predicted adoptions). By setting ejt = 0

instead, I am able to transparently assess the predictive power of the structural model

attributable to the main variables of interest. Additionally, the interpretation of êjt is

trickier in this dynamic context than in a (typically) static context like merger simu-

lation, because êjt could include, among other things, information about households’

beliefs about future solar incentive programs, which would of course not remain fixed

in response to changes in these programs. Therefore, I find it more reasonable not to

treat the ejt’s as structural parameters in my application.

Each counterfactual scenario I simulate only affects demand for PV systems through

changes to the price term
(
pjt − δp1t+1

)
in the estimating equation,

log
(sjt
s0t

)
=
(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ δ log (s1t+1) + ejt.

To streamline the discussion of implementing each counterfactual, recall each com-
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ponent of the net present cost of installation,

(1) upfront subsidies;

UFjt = (0.3 · pIjt)−Rjt − (1− 0.22) ·min
{

[0.15 · (pIjt −Rjt)], 1000
}
,

(2) net metering revenue;

PVnm
jt =

24∑
τ=0

δτ · (1− d)τ · gejt · pet+τ ,

(3) and SREC revenue;

PVsc
jt =

24∑
τ=0

δτ · (1− d)τ · gejt · psct+τ ,

where the net present cost of installation is the upfront installation cost minus the

above terms,

pjt = pIjt − UFjt − PVnm
jt − PVsc

jt .

7.1.1 Removal of Upfront Subsidies

When upfront subsidies are removed pjt and p1t+1 become,

pjt = pIjt − PVnm
jt − PVsc

jt ,

p1t+1 = pI1t+1 − PVnm
1t+1 − PVsc

1t+1,

and
(
pjt − δp1t+1

)
becomes,

(
pjt − δp1t+1

)
=
(
pIjt − δpI1t+1

)
−
(
PVnm

jt − δPVnm
1t+1

)
−
(
PVsc

jt − δPVsc
1t+1

)
.

7.1.2 Removal of SREC Revenue

When SREC revenue is removed pjt and p1t+1 become,

pjt = pIjt − UFjt − PVnm
jt ,

p1t+1 = pI1t+1 − UF1t+1 − PVnm
1t+1,

and
(
pjt − δp1t+1

)
becomes,

(
pjt − δp1t+1

)
=
(
pIjt − δpI1t+1

)
−
(
UFjt − δUF1t+1

)
−
(
PVnm

jt − δPVnm
1t+1

)
.
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7.1.3 Removal of Net Metering Revenue

The case of net metering is more complicated than the other policies, because rather

than directly affecting demand, preventing net metering indirectly affects a household’s

choice of PV system through its effect on the household’s electricity bill. Not allowing

households to net meter prevents them from balancing periods of net energy consump-

tion with periods of net energy generation, which will lead them to purchase smaller

capacity systems.

To see this, suppose each household chooses its system capacity optimally so that

the estimated annual generation of the system exactly equals the household’s annual

consumption. Because household energy consumption fluctuates throughout the year

and the efficiency of solar panels fluctuates throughout the year, a net metering policy

enables the household to compensate for periods of net consumption with periods of net

generation. Under such a policy, assume that households will purchase systems such

that total system generation equals total their consumption,

12∑
m=1

gm =
12∑
m=1

cm,

or equivalently such that average monthly generation equals average monthly consump-

tion,

12 · ḡ = 12 · c̄.

If this net metering policy were removed, then households wouldn’t purchase the

same sized system because they wouldn’t be able to compensate for periods of net

consumption with periods of net generation. Instead, perhaps each household would

choose a system with average generation ḡ∗ such that average generation is a fraction

F ∈ (0, 1) of its average consumption,

ḡ∗ = F · c̄.

That is, when the policy is removed, each household chooses a system that generates

only enough electricity to cover a portion of its monthly consumption in order to avoid

excess generation for which it is no longer compensated.

Determining how large an impact preventing net metering would have on house-

holds’ choice of system capacity is difficult without household-level data on energy

consumption. Therefore, in the absence of such data, I choose a range of values for the

fraction of generation impacted by the loss of net metering F = {0.1, 0.25, 0.5, 0.75, 0.9}
and compare the differences of the effects on overall residential adoption. Values of F

closer to 1 are likely to be more realistic, however, the range of effects is still informative

39



as to the magnitude of the impact of removing the policy.

In the model, F enters the net metering revenue portion of the price term,

PVnm
jt =

24∑
τ=0

δτ · (1− d)τ · F · gejt · pet+τ ,

thus affecting demand by reducing the value of net metering and increasing the net

present cost of installation.

7.1.4 Consumer Welfare

In order to calculate the change in consumer welfare attributable to each policy, I use

the standard formula for computing welfare for discrete choice models (Train 2003).

However, an important difference in my application is that changes in policies affect

not only households’ utility for PV systems uijt but also their utility from the outside

option vi0t, in this case the value of waiting to adopt.

Where JS and JN denote the set of products with and without the subsidy (or

subsidies) of interest, the change in consumer surplus due to the subsidy is given by,

∆E[CSt] =
Mt

α

[
log
(

exp (v̄S0t) +
JS∑
j=1

exp (ūSjt)
)
− log

(
exp (v̄N0t ) +

JN∑
j=1

exp (ūNjt )
)]
.

Another important caveat of these welfare calculations is that my analysis is a partial

equilibrium analysis, as opposed to a general equilibrium analysis, because for example

if an increasingly large number of households in Massachusetts adopted PV systems

eventually SREC prices would go to zero. Therefore, one might think of the average

consumer surplus in this context as the amount of consumer welfare generated by the

program for the marginal household or perhaps as an upper bound of average consumer

welfare generated by the program.

7.2 First Counterfactual: Program Effects

The results of the first set of counterfactuals are displayed in Table 18 and Figures 16,

17, and 18. The top panel of Table 18 displays cumulative adoptions during the 2008–

2017 period by system capacity predicted using the homogenous demand estimates,

while the bottom panel displays the predictions of the heterogenous demand estimates.

Figures 16, 17, and 18 display cumulative adoptions over time by system size using

homogenous and heterogenous demand estimates, respectively. First, note that the

homogenous demand model overpredicts total cumulative adoptions by just under 3,000

or about 11% (the model overpredicts adoptions for all capacities except the [10,20)
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kW category). While the model predicts the flow of adoptions in any given year poorly,

its prediction for the stock of PV systems in 2017 is relatively good. The flexibility of

the heterogenous model slightly improves its predictive power, but does not change the

overall results. Therefore, for purposes of analysis I rely more upon the estimates of

the simpler model.

Comparing the counterfactual outcomes of the model, elimination of upfront sub-

sidies reduces adoptions the most, closely followed by the elimination of the SREC

market. The impact of preventing households from net metering depends on the de-

gree to which households’ consumption varies during in a year, however, even at the

extremes net metering has less of an effect on adoption rates than either of the other

policies. Notice that the elimination of any one incentive program significantly impacts

cumulative adoptions because (1) the elimination of any program substantially increases

the net present cost of PV systems and (2) the probability of adoption is modeled as

a nonlinear function of price, and the marginal effect of each program is large holding

the level of other incentives constant.

Comparing the predicted to counterfactual outcomes, I estimate that elimination

(1) of upfront subsidies would have decreased cumulative adoptions by approximately

80%, (2) the SREC market by 78%, and (3) net metering, assuming a relatively small

impact by 13%. Table 19 presents the change in consumer welfare generated by each

program, where I measure the change as the difference between having all the programs

and the elimination of the program of interest. Note that measuring the change in

consumer welfare due to introduction of more than one program is indeed possible but

onerous to present.

From the results we can see that upfront subsidies generated the largest amount

of consumer surplus during the 2008–2017 period. Again recall that these estimates

represent a partial equilibrium analysis and as such should be interpreted appropriately.

The marginal household in Massachusetts benefitted most from upfront subsidies offered

by federal and state governments. Another aspect of these welfare exercises to consider

when interpreting the results is that setting aside the relative magnitude of upfront

incentives and future incentives, all else equal, a household values a dollar today more

than a dollar in the future. Therefore, the amount of future incentives received by

households would necessarily have to be greater than upfront subsidies in order to

achieve a commensurate increase in consumer surplus—the implication of this result is

explored further in the second series of counterfactuals.
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7.3 Second Counterfactual: Upfront vs. Long-term Incentives

In the first set of counterfactuals, I measure the effectiveness of each incentive program

introduced in Massachusetts on aggregate adoption by predicting the change in cumula-

tive adoption in the absence of the incentives households actually received. While useful

for measuring the total effects of these programs on overall adoption, these simulations

do not yield an apple-to-apples comparison of the efficacy of upfront and long-term

incentive programs on a dollar-for-dollar basis, which would be useful to policymakers.

In this section, I perform such an exercise by comparing the effects of a $10,000

upfront subsidy to households and a $10,000 long-term subsidy distributed in equal

amounts annually over 25 years ($400 per year for the lifespan of the system). I choose

$10,000 as the total amount of each subsidy in these counterfactuals so as to roughly

match the incentives Massachusetts households received through different programs.

As reported in Table 24, Massachusetts households received approximately $10,000 in

incentives through each program I account for (upfront subsidies, SREC revenue, and

net metering revenue).

Unlike the previous set of counterfactuals, I do not differentiate between the mech-

anisms through which long-term incentives could be distributed (i.e. via a SREC pro-

gram or via net metering), because the effect of any long-term incentive program in the

structural model is determined by the parameters α and δ and the per period revenues

of the incentive, not the mechanism through which an incentive is distributed.

Also, unlike the set of previous counterfactuals, rather than predicting the change

in aggregate adoptions by removing incentives that households received, I invert this

exercise and ask: starting from a baseline of no incentives—how much would cumulative

adoption increase given the introduction of alternative incentive programs?

Essentially this counterfactual considers a scenario in which a policymaker is de-

ciding whether to implement either an upfront or long-term solar incentive program of

equal cost per adopting household.

As a baseline in the simulations, I first use my empirical estimates to predict adop-

tion without any incentives, then I predict cumulative adoptions over time given the

introduction of the upfront subsidy and long-term subsidy.

Figure 19 displays the counterfactual results. In the absence of any incentives,

the model predicts 6,225 adoptions by 2017. From this baseline, I estimate that an

upfront subsidy of $10,000 to each adopter would increase cumulative adoption by 83%

to 11,376 households, whereas a long-run subsidy of $10,000 distributed evenly over 25

years would increase cumulative adoption by 13% to 7,032 households by 2017.

This exercise demonstrates the gap in efficacy of upfront and long-term subsidies

driven by households’ relatively low discount factor.
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8 Estimating the Value of Avoided CO2 Emissions

One particularly relevant question for energy and environmental policymakers is to what

extent do incentive programs reduce carbon dioxide emissions? Also, given the negative

externalities associated with CO2 emissions what is the economic value of avoided

emissions due the implementation of these programs? Using the homogenous demand

parameter estimates, I approximate the reduction in CO2 emissions attributable to

each incentive program. Then with a recent estimate of the social cost of carbon (SCC)

from Cai and Lontzek (2019), I quantify the value of avoided CO2 emissions due to

each program.

To approximate the reduction in CO2 emissions given the implementation of each

incentive program, for simplicity, I assume that in the absence of PV adoption, any

electricity generated by residential solar panels would have been generated by an electric

utility provider instead. Furthermore, I assume that this electricity would have been

generated using natural gas power plants. The EIA’s 2019 profile of Massachusetts

indicates that 70.3% utility-scale net electricity generation is sourced from natural gas-

fired power plants, while the almost all of the remainder is derived from renewables.23

Correctly identifying the source of electricity generation is important for determining

avoided CO2 emissions because pollution varies substantially across fuels. According

to EIA, on average coal, natural gas, and petroleum-fired power plants emit 2.21, 0.91,

and 2.13 pounds of CO2 per kWh of electricity generated, respectively.24 Using EIA’s

estimate of pounds of CO2 per kWh for natural gas-fired power plants, I approximate

metric tons of CO2 emitted per MWh of electricity generated as,25

tCO2

MWh
= 0.91× 1, 000× 1

2, 204.62
≈ 0.41.

The standard definition of the social cost of carbon in the economic literature is

the monetized economic loss caused by an increase in atmospheric carbon. In their

model, Cai and Lontzek (2019) define the SCC as the marginal rate of substitution

between atmospheric carbon concentration and capital and express the SCC in dollars

per (metric) tons of carbon. As they note, the SCC is a shadow price that fluctuates

as the state of the economy and climate evolve over time. I use their mean estimate of

the SCC in 2020, $87, which I convert into dollars per tons of CO2 by multiplying by

23EIA, Massachusetts State Energy Profile, https://www.eia.gov/state/print.php?sid=MA
24EIA, How much carbon dioxide is produced per kilowatthour of U.S. electricity generation?,

https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
25The factor 1,000 converts 1

kWh to 1
MWh . The factor 1

2,204.62 converts lbs to metric tons
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a factor of 12
44

(given in Cai and Lontzek 2019),

$

tCO2

=
12

44
× $87

tC
≈ $23.73

tC
.

Combining the above equations, the social cost of CO2 per MWh that I use in my

analysis is,
SCCO2

MWh
=

tCO2

MWh
× $

tCO2

≈ $9.79.

Next I quantify the value of the avoided CO2 emissions due to each incentive pro-

gram during the period 2008–2017. In order to perform this exercise, first I approximate

the total amount of electricity generated by all residential solar panels in Massachusetts

adopted in my sample during this period. I assume that every year each system gener-

ates an amount of electricity equal to the median estimated annual production of the

discrete category to which it belongs: [0,4), [4,6), [6,8), [8,10), and [10,20). Where qjt

is the number of solar systems of capacity j ∈ {1, ..., 5} installed at time t and ḡj is the

median estimated annual production of system j, total electricity generation is given

by,

Generation (MWh) =
2017∑
t=2008

(
ḡ1 · q1t + ḡ2 · q2t + ...+ ḡ5 · q5t

)
.

(It may be appropriate to discount this quantity with a social planner’s discount

factor, as well as account for depreciation here). Given the data I observe, the total

amount of electricity generated by residential solar systems from 2008 to 2017 was

approximately 625 thousand MWhs. To put this figure in perspective, total annual

electricity generation for Massachusetts in 2019 was 1,334 thousand MWhs.26

Using my NLIV estimates I calculate total electricity generation predicted by the

model, as well as in counterfactual scenarios where I remove either (1) upfront subsidies,

(2) SREC revenues, or (3) net metering revenues. These results are displayed in Table

20 and Figure 20. Because the underlying demand model overpredicts the number of

adoptions (see Table 18) it also overpredicts the amount of electricity generated, but

in this case by 50% (as opposed to only 11%) because as the stock of installations

increases the flow of annual generation increases. However despite this overprediction,

by comparing predicted generation to counterfactual generation I can recover a rough

estimate of the effect of removing each incentive program on actual generation. For

example, removing households’ SREC incentives would result in a (1− 164,814
944,249

) ≈ 82.5%

decrease in total generation.

With estimates of total generation in hand, I can quantify the value of avoided CO2

emissions by simply multiplying total generation by the social cost of CO2 per MWh

26EIA, Massachusetts State Energy Profile, https://www.eia.gov/state/print.php?sid=MA
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($9.79). Using the relative difference between predicted and counterfactual generation,

I approximate the value of avoided CO2 emissions due to each program as follows,

Value of Avoided CO2 Emissions = $9.79×
(

1−Counterfactual Generation

Predicted Generation

)
×Actual Generation.

The results displayed in Table 21 show that avoided CO2 emissions during the 2008–

2017 period attributable to upfront subsidies are worth approximately $5.25 million to

society. This is a relatively modest sum compared to the amount of upfront support

given to PV system adopters, about $280 million. More generally, the results show that

the social value generated by each program is two orders of magnitude smaller than the

government’s investment in each. Stated another way, in order for the government to

breakeven on its investment in upfront subsidies, the SCC would have to be approx-

imately 53.5 times larger than Cai and Lontzek’s estimate of $87 per ton of carbon

($4,655 per ton of carbon) or almost 25 times larger than the current federal estimate

of $51 per ton of CO2 ($1,269 per ton of CO2). Therefore, if the government’s main

objective was to reduce CO2 emissions via these policies, then my estimates suggest

that investment in these programs was relatively inefficient. However, it is certainly

possible that the state had other objectives besides reducing emissions. For exam-

ple, these objective could include increasing general awareness of green technologies or

preparing current energy infrastructure for interoperability with small scale renewables

in the future.

Table 21. Value of Avoided CO2 Emissions (2008–2017) (return)

Program Social Value
Cost Over
2008–2017

Cost Over
Lifespan

CF (1): Upfront Subsidies $5.25 M $281.01 M $281.01 M

CF (2): SREC $5.06 M $188.17 M $785.38 M

CF (3): Net Metering 50% $3.22 M $113.32 M $1,613.98 M

Total $582.51 M $2,680.38 M

Notes: See Tables 22, 23, and 24 for more detailed information about the social value and costs
attributable to each incentive program. “Cost Over 2008–2017” accounts for realized incentives dis-
tributed during the 2008–2017 period. “Cost Over Lifespan” accounts for all incentives distributed
over the lifespan of PV systems adopted during 2008–2017. While “Cost Over 2008–2017” may make
for a better comparison with the estimated value of avoided CO2 emissions during this same period, as
reflected in the structural model, a household’s PV adoption decision is made on the basis of expected
savings over the lifespan of the system. For comparison, I report both here.
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8.1 Limitations

There are several limitations of the counterfactual analysis I undertake, which may

impact my estimates of the effect each incentive program has on overall PV adoption

rates as well as the implied social benefits generated by each incentive. While there

may be others, I discuss four potential limitations here: (1) supply-side response to

incentives, (2) households’ responses to different incentives, (3) interactions between

incentive programs, and (4) market expansion over time/peer effects.

8.1.1 Supply-side Response to Demand-side Incentives

As previously discussed, I do not attempt to model the supply side of the market in this

paper to avoid the added complexity of modeling dynamic competition among firms.

However, it is important to consider how the results of my counterfactual analysis might

change in general equilibrium, taking into account the behavior of PV manufacturers. In

particular, one relevant question with respect to supply is whether the rapid decline in

PV module manufacturing costs abroad during the 2008–2018 period (see Figure 2) was

partially driven by domestic solar subsidies. If federal and state demand-side incentives

spurred PV manufacturers to scale up their operations and reduce module production

costs in order to meet demand, it is possible that my counterfactual estimates understate

the social benefit generated by the demand-side incentive programs I study due to

spillover effects on the supply side of the market. Then the question is how much of

the decline in manufacturing costs is attributable to demand-side incentives? Given

the large differential in the estimated costs and benefits of the programs that I find,

the supply-side response attributable to these programs would have to be substantial

in order to lead to a net social benefit. However, further study may be needed to

quantify the contribution of domestic demand-side incentives to the reduction in PV

manufacturing costs abroad (for example see Gerarden 2018).

8.1.2 Households’ Responses to Different Incentives

A potential limitation of the demand model is that the effect of different incentives

on household adoption are treated the same in the sense that households’ responses

to different incentives are captured by only two parameters in the model, the house-

hold’s sensitivity to price α and the household’s discount factor δ. Therefore, the

model assumes that households exhibit the same sensitivity to each incentive, which

isn’t necessarily the case. For example, of the upfront incentives households receive,

it is possible that federal and state tax credits are more salient than the state rebate

programs. Likewise in the case of future incentives, it is possible that the benefits of

net metering are more evident to households than the benefits of the SREC programs.
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Furthermore, there may be differences in the design of the programs, other than time

horizon, that affect their efficiency. For example, production subsidies such as net me-

tering and SRECs may be more likely to target the marginal PV adopter at any given

time, whereas large upfront subsidies may be more likely to encourage inframarginal

adoption. In that case, my analysis may overstate the efficiency of upfront incentives

relative to long-term incentives.

8.1.3 Interactions Between Incentive Programs

Another potential limitation related to the model of demand is that households’ re-

sponses to changes in price, and therefore changes in incentives, are nonlinear. As a

result, the sum of the marginal impacts of removing each incentive is larger than the

combined impact of removing more than one incentive. While this may be a realistic

way to model household behavior, it is important to recognize this assumption. Ad-

ditionally, interactions between incentive programs in equilibrium are not captured in

the model. For example, as more and more households adopt PV, electricity prices

and SREC prices may change in response. For example, Borenstein (2017) found that

PV adoption in California put upwards pressure on electricity prices as electric utili-

ties’ customer bases shrank. Similarly, increased PV adoption increases the supply of

SRECs, putting downward pressure on equilibrium SREC prices. While it is possible

for me to perform counterfactuals in which I remove more than one incentive at a time,

it is not straightforward to model these potential spillover effects.

8.1.4 Market Expansion Over Time/Peer Effects

A final potential limitation of my analysis is that I do not account for the fact that

market size may be growing over time for several reasons. First, it is likely that early

on in my sample households’ general awareness of solar panels as a viable alternative to

conventional electricity provision was low relative to later on in my sample. Second, the

entry of large firms such as SolarCity and Vivant into the market, as well as increased

advertising is likely to have impacted households’ awareness. Finally, other papers in the

solar literature have identified the potential importance of peer effects on households’

adoption decisions (Bollinger and Gillingham 2012, Bollinger, Gillingham, Kirkpatrick,

and Sexton 2020). Signing the bias of market expansion over time is challenging because

on the one hand, while overestimating the market size will lead to an understatement

of the effects of incentives on adoption, on the other hand, if peer effects play a role in

adoption behavior then presumably ignoring these effects would lead me to overstate

the effects of incentives, all else equal. Modeling growing awareness over time, possibly

through peer effects, is potentially a fruitful avenue for future work.
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9 Conclusion

Determining cost effective policies to facilitate a transition to a greener and cleaner

economy in the near future is a significant and increasingly salient challenge for poli-

cymakers. In this article, I estimate a dynamic discrete choice model of residential PV

adoption in Massachusetts in which households receive both upfront and long-term in-

centives and estimate households’ price sensitivity and discount factor. I then use these

results to conduct a cost-benefit analysis of three solar incentive programs established

by the state. My empirical results suggest that dollar for dollar upfront incentives are

likely to be more cost effective than long-term incentives, because residential adopters

significantly discount the future benefits of adopting solar panels. Additionally, com-

pared to previous work using data from Belgium, I find that Massachusetts households

are more myopic about long-term solar incentives. Furthermore, this myopia may be at

least partially attributable to the unique design of the SREC market in Massachusetts,

through which households received a large fraction of their long-term incentives.

In terms of environmental and energy policy, my cost-benefit analysis of demand-

side incentives for residential PV systems suggests that recent efforts to encourage the

adoption of small scale renewables in Massachusetts have indeed increased adoption

rates, however, these policies appear to have been relatively inefficient as a means

of reducing CO2 emissions. Based on my estimates, in order for the government to

breakeven on its investment in upfront residential solar incentives, in terms of the

social benefits of abatement, the social cost of carbon would have to be 25 times larger

than the current federal estimate.

Despite this dim finding for Massachusetts’ solar policy, designing a cost effective

solar subsidy program aimed at reducing CO2 emissions is fraught with perils given high

uncertainty about the social cost of carbon, as well as uncertainty about future demand

for solar. Ex-post, the costs of these programs seem out of proportion with their social

benefits, however, ex-ante, they may have appeared like promising investments. An

alternative policy approach for environmental and energy policymakers would be to

impose a tax on carbon rather than subsidizing new technologies, as many economists

have suggested (WSJ 2019). This would still require estimating the social cost of carbon

but would avoid the challenge of calibrating incentives so as to stimulate demand in

a cost effective manner, which, as this paper suggests, is likely difficult to get right in

practice.

Additionally, my findings beg the question are there more cost effective alternatives

in which society should invest to curb emissions? Other potential investments on the

table include those on the cutting edge such as electric vehicles, next generation nuclear

power plants, and hydrogen fuel, and those that are more conventional such as energy
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efficiency improvements to the grid and public facilities and substitution away from

coal towards natural gas. An accounting of the marginal social benefits of potential

abatement from these investments, similar to the exercise conducted in this paper,

would be a useful tool for policymakers.
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Appendices

A Tables

Table 1. Duration of Long-term PV Incentives (return)

Installation Year Net Metering Program Revenue/ SREC I Revenue SREC II Revenue

Avoided Electricity Cost

2008 2008 – 2032 N/A N/A

2009 2009 – 2033 N/A N/A

2010 2010 – 2034 2010 – 2025 N/A

... ... ... ...

2013 2013 – 2037 2013 – 2025 N/A

2014 2014 – 2038 N/A 2014 – 2029

... ... ... ...

2017 2017 – 2041 N/A 2017 – 2029

Notes: This table summarizes the stream of future incentives a household receives on annual basis

conditional on the year it adopts a PV system. A household adopting in 2008 receives the benefits of

the net program/avoided electricity costs over the 25 lifespan of the system. A household adopting in

2010 receives benefits through net metering in addition to revenue through the first, more generous,

phase of the SREC market until the end of phase I in 2025. A household adopting in 2014 receives

benefits through net metering in addition to revenue through the second, less generous, phase of the

SREC market until the end of phase II in 2029.
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Table 2. Means and Medians by System Capacity (return)

System Capacity (kW)

Means [0,4) [4,6) [6,8) [8,10) [10,20) Total

System Capacity (kW) 3.12 5.04 6.95 8.98 12.20 7.50

System Estimated Production (kWh) 3,747.93 5,951.05 8,238.79 10,494.49 14,152.89 8,803.53

Upfront Installation Cost 16,444.91 23,581.38 29,755.82 35,982.72 46,477.22 31,330.94

MA Grants/Rebates 2,181.62 1,889.99 774.59 528.57 276.96 1,058.83

Medians

System Capacity (kW) 3.25 5.04 6.90 8.99 11.79 7.08

System Estimated Production (kWh) 3,785.00 5,918.00 8,153.00 10,493.00 13,753.50 8,242.00

Upfront Installation Cost 15,491.86 22,233.38 28,382.37 34,619.87 44,655.88 29,897.36

MA Grants/Rebates 0.00 0.00 0.00 0.00 0.00 0.00

Observations 3,417 7,933 7,836 6,089 6,362 31,637

Notes: Number of observations 31,637 is the number of residential, host-owned installations during the

2008–2018 period. In the structural model, households’ choice of PV system is discretized by system

capacity into the five categories displayed above. Upfront installation costs, state grants and rebates,

and estimated annual production are aggregated within these capacity categories, within utility service

areas, and within years. Median values are used to estimate the model, however, as shown above mean

values are similar.
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Table 3. Electricity Price Trend Estimates (return)

Specification Log Price per kWh

Estimates
Standard

Errors

Municipal Utilities × Time 0.0188 (0.00180)

NSTAR × Time 0.0374 (0.00928)

National Grid × Time 0.0610 (0.0142)

Unitil × Time 0.0419 (0.00653)

WMECO × Time 0.0384 (0.0117)

NSTAR 0.212 (0.0731)

National Grid -0.0479 (0.115)

Unitil 0.270 (0.0520)

WMECO 0.0939 (0.0834)

Constant -2.179 (0.0117)

R2 0.851

F-Statistic 114.74

Observations 54

Notes: Observations are annual residential electricity prices by electric utility during the 2008–2018
period: 5× 11 observations (missing price data for WMECO in 2018). Municipal utilities are grouped
together. Heteroskedasticity-consistent standard errors are displayed in parentheses. Utility-specific
time trends are used to forecast future electricity prices in order to calculate households’ value of net
metering/avoided electricity costs.

Table 4. Distribution of Residential Solar Installations and Customers by Utility
(return)

Utilities Installations (2008–2018) Customers (2008)

Municipal Utilities 2,098 (6.63%) 333,506 (13.99%)

NSTAR (DBA EverSource) 12,320 (38.94%) 785,251 (32.95%)

National Grid 13,110 (41.44%) 1,062,277 (44.57%)

Unitil 453 (1.43%) 24,277 (1.02%)

WMECO (DBA EverSource) 3,656 (11.56%) 178,173 (7.48%)

Total 31,637 2,383,484

Notes: 31,637 is the number of residential, host-owned PV installations during 2008–2018. 2,383,484 is
the total number of residential electric utility customers in Massachusetts in 2008. The distribution of
PV installations across electric utilities is similar to the distribution of residential customers. Municipal
utilities are grouped together.
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Table 5. Aggregate Data Summary Statistics (2008–2017) (return)

Variables Mean
Std.
Dev.

Minimum Median Maximum N

Adoptions 104 167 1.0e-06 30 766 250

System Market Share .00024 .00028 1.3e-12 .00014 .0012 250

Upfront Installation Cost 35,280 16,646 7,092 32,859 103,671 250

Federal Tax Credit 10,584 4,994 2,128 9,858 31,101 250

MA Grants/Rebates 3,337 4,267 0 1,863 20,297 250

MA Tax Credit 778 33 262 780 780 250

System Capacity (kW) 7.2 3 2.1 6.9 14 250

System Estimated Production (kWh) 8,299 3,471 2,571 8,031 16,952 250

Notes: This table summarizes the aggregate sample of PV adoption data used to estimate the struc-
tural demand model. The number of observations is 250 = 5 capacities × 5 utility markets × 10 years
(2008–2017). Adoptions are residential, host-owned PV installations summed within system-market-
years. Median values of individual installation data are used to estimate aggregate prices, incentives,
and estimated annual production within system-market-years.

Table 6. Price Variance Decomposition (2008–2017) (return)

System Mean
Std. Dev.
(Overall)

Std. Dev.
(Between)

Std. Dev.
(Within)

Capacity [0,4) kW 7,846 3,537 1,863 3,111

Capacity [4,6) kW 12,094 3,791 1,655 3,484

Capacity [6,8) kW 19,532 3,221 1,518 2,915

Capacity [8,10) kW 27,448 7,769 1,080 7,707

Capacity [10,20) kW 34,891 6,518 861 6,471

Notes: Means are average upfront installation prices by capacity over utility markets and years.
Overall standard deviations are calculated over markets and years, between standard deviations are
calculated between markets, within standard deviations are calculated within markets. The number
of observations for each statistic is 50 = 1 capacity × 5 utility markets × 10 years (2008–2017).
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Table 7. First-Stage Estimates for Demand (return)

Specification Installation Cost (000)

Estimates
Standard

Errors

Average Installation Cost (000) 0.375 (0.0460)

Capacity [4,6) kW 0.852 (0.954)

Capacity [6,8) kW 5.087 (1.056)

Capacity [8,10) kW 9.002 (1.158)

Capacity [10,20) kW 12.68 (1.867)

Constant 1.837 (0.906)

R2 0.871

F-Statistic 355.17

Observations 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).
Heteroskedasticity-consistent standard errors are displayed in parentheses. Average installation cost
is the Hausman-Nevo instrument for price—mean installation prices across other utility service areas.
The first-stage F-Statistic is greater than 10.

Table 8. Linear Demand Equation Estimates (return)

OLS, δ = 0 IV, δ = 0 OLS, δ = 0.9 IV, δ = 0.9

Parameters Estimates
Standard

Errors
Estimates

Standard
Errors

Estimates
Standard

Errors
Estimates

Standard
Errors

α: Net Present Installation Cost (000) -0.347 (0.083) -0.829 (0.163) -0.202 (0.033) -0.251 (0.040)

β̃2: Capacity [4,6) kW 2.375 (0.761) 4.428 (1.045) 0.107 (0.774) -0.087 (0.799)

β̃3: Capacity [6,8) kW 3.913 (1.199) 9.554 (1.954) -1.074 (0.853) -1.302 (0.863)

β̃4: Capacity [8,10) kW 5.078 (1.471) 14.538 (2.863) -3.009 (1.024) -3.323 (1.056)

β̃5: Capacity [10,20) kW 6.262 (2.347) 19.312 (4.231) -5.073 (1.032) -5.550 (1.116)

β̃0: Constant -6.961 (0.796) -3.075 (1.419) -1.025 (0.561) -1.023 (0.564)

R2 0.214 -0.042 0.305 0.290

Markets 5 5 5 5

Years 10 10 10 10

Observations 250 250 250 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. The first two specifications

are static aggregate multinomial logit demand models, static because households’ discount factor is set

to 0. The second two specifications are dynamic aggregate multinomial logit demand models estimated

using the ECCP approach, where households’ discount factor is set to 0.9. Note that the net present

cost of installation (price) is a function of δ in the model. IV specifications are estimated using average

upfront installation cost across other markets as an instrument for price.
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Table 9. Nonlinear Demand Equation Estimates (return)

NLLS NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Estimates

Standard
Errors

Parameters NLLS NLIV

α: Net Present Installation Cost (000) -0.3605 (0.0789) -0.3197 (0.1547) α -0.3605 -0.3197

β̃2: Capacity [4,6) kW 1.9169 (0.6869) 0.7142 (1.7066) β1 -7.7988 -9.6627

β̃3: Capacity [6,8) kW 3.0411 (0.9827) 0.5104 (3.4594) β2 -5.8819 -8.9485

β̃4: Capacity [8,10) kW 3.7068 (1.1833) -0.3596 (5.2832) β3 -4.7577 -9.1524

β̃5: Capacity [10,20) kW 4.3102 (1.8622) -1.4140 (7.2409) β4 -4.0920 -10.0223

β̃0: Constant -5.1171 (0.8014) -1.8267 (1.7682) β5 -3.4886 -11.0767

δ: Discount Factor 0.3439 (0.1058) 0.8110 (0.1936) δ 0.3439 0.8110

Objective Value 8.6503 0.0000

R2 0.3089 0.2201

Markets 5 5

Years 10 10

Observations 250 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. Both specifications are

dynamic aggregate multinomial logit demand models estimated using the ECCP approach, where δ

is a parameter to be estimated. The NLLS specification does not instrument for price, whereas the

NLIV specification uses average upfront installation costs across other markets as an instrument for

price and one period ahead SREC prices as an instrument for the discount factor. Note that the net

present installation cost (price) is a function of δ in the model. The normalized estimates report the

capacity-specific constants in households’ indirect utility function, β1, ..., β5, which can be separately

identified by a transformation of the original estimates.
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Table 10. Reduction of Market Size to 10% (return)

NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters NLIV

α: Net Present Installation Cost (000) -0.3211 (0.1563) α -0.3211

β̃2: Capacity [4,6) kW 0.7231 (1.7129) β1 -7.3129

β̃3: Capacity [6,8) kW 0.5325 (3.4778) β2 -6.5898

β̃4: Capacity [8,10) kW -0.3229 (5.3143) β3 -6.7804

β̃5: Capacity [10,20) kW -1.3631 (7.2836) β4 -7.6358

β̃0: Constant -1.3920 (1.3455) β5 -8.6760

δ: Discount Factor 0.8097 (0.1955) δ 0.8097

Objective Function 0.0000

R2 0.2251

Markets 5

Years 10

Observations 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. In this specification, the

initial market size, number of residential utility customers in 2008, is reduced to 10% of its size.

Average upfront installation costs across other markets is used as an instrument for price, and one

period ahead SREC prices are used as an instrument for the discount factor. The normalized estimates

report the capacity-specific constants in households’ indirect utility function, β1, ..., β5, which can be

separately identified by a transformation of the original estimates.
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Table 11. Market Fixed Effects Robustness (return)

NLLS NLIV

Parameters Estimates
Standard

Errors
Estimates

Standard
Errors

α: Net Present Installation Cost (000) -0.3637 (0.0785) -0.3177 (0.1552)

β̃2: Capacity [4,6) kW 1.9848 (0.7083) 0.6984 (1.7200)

β̃3: Capacity [6,8) kW 3.1869 (0.9982) 0.4725 (3.4877)

β̃4: Capacity [8,10) kW 3.9416 (1.2161) -0.4220 (5.3227)

β̃5: Capacity [10,20) kW 4.6404 (1.9153) -1.5007 (7.3009)

NSTAR 0.6789 (0.8400) 0.0271 (0.7738)

National Grid 1.2508 (0.7969) 1.0466 (0.8291)

Unitil -0.8105 (1.1575) 0.3570 (1.1810)

WMECO 0.7070 (0.8622) 0.3908 (0.7740)

Constant -6.0344 (1.0867) -2.1729 (1.8828)

δ: Discount Factor 0.2602 (0.1185) 0.8132 (0.1934)

Objective Function 8.4284 0.0000

R2 0.3266 0.2252

Markets 5 5

Years 10 10

Observations 250 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. Both specifications include

utility market fixed effects. The NLLS specification does not instrument for price, whereas the NLIV

specification uses average upfront installation costs across other markets as an instrument for price

and one period ahead SREC prices as an instrument for the discount factor. Note that the net present

installation cost (price) is a function of δ in the model.
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Table 12. Electricity Price Linear Robustness (return)

NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters NLIV

α: Net Present Installation Cost (000) -0.3262 (0.1439) α -0.3262

β̃2: Capacity [4,6) kW 0.7718 (1.5887) β1 -9.6119

β̃3: Capacity [6,8) kW 0.6458 (3.1708) β2 -8.8401

β̃4: Capacity [8,10) kW -0.1380 (4.8069) β3 -8.9661

β̃5: Capacity [10,20) kW -1.1039 (6.5704) β4 -9.7499

β̃0: Constant -1.8777 (1.6697) β5 -10.7159

δ: Discount Factor 0.8047 (0.1843) δ 0.8047

Objective Function 0.0000

R2 0.2199

Markets 5

Years 10

Observations 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. In this specification, I use

an alternative forecast of future electricity prices, which affects the net present installation cost of

PV systems through net metering/avoided electricity cost incentives. In this case, I assume future

electricity prices follow a simple linear time. Average upfront installation costs across other markets

is used as an instrument for price, and one period ahead SREC prices are used as an instrument for

the discount factor. The normalized estimates report the capacity-specific constants in households’

indirect utility function, β1, ..., β5, which can be separately identified by a transformation of the original

estimates.
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Table 13. Electricity Price No Growth Robustness (return)

NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters NLIV

α: Net Present Installation Cost (000) -0.3341 (0.1329) α -0.3341

β̃2: Capacity [4,6) kW 0.8406 (1.4680) β1 -9.5468

β̃3: Capacity [6,8) kW 0.8076 (2.8723) β2 -8.7062

β̃4: Capacity [8,10) kW 0.1270 (4.3132) β3 -8.7392

β̃5: Capacity [10,20) kW -0.7337 (5.8762) β4 -9.4198

β̃0: Constant -1.9385 (1.5712) β5 -10.2805

δ: Discount Factor 0.7969 (0.1750) δ 0.7969

Objective Function 0.0000

R2 0.2193

Markets 5

Years 10

Observations 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. In this specification, I

use an alternative forecast of future electricity prices, which affects the net present installation cost

of PV systems through net metering/avoided electricity cost incentives. In this case, I assume future

electricity prices remain constant at 2018 levels. Average upfront installation costs across other markets

is used as an instrument for price, and one period ahead SREC prices are used as an instrument for

the discount factor. The normalized estimates report the capacity-specific constants in households’

indirect utility function, β1, ..., β5, which can be separately identified by a transformation of the original

estimates.
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Table 14. SREC Lower Bound Robustness (return)

NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters NLIV

α: Net Present Installation Cost (000) -0.2102 (0.1256) α -0.2102

β̃2: Capacity [4,6) kW -1.0308 (2.3631) β1 -6.9655

β̃3: Capacity [6,8) kW -3.2938 (4.7091) β2 -7.9963

β̃4: Capacity [8,10) kW -6.5706 (7.2904) β3 -10.2593

β̃5: Capacity [10,20) kW -10.0934 (10.1180) β4 -13.5360

β̃0: Constant -0.2206 (1.7137) β5 -17.0589

δ: Discount Factor 0.9683 (0.1103) δ 0.9683

Objective Function 0.0000

R2 0.1349

Markets 5

Years 10

Observations 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. In this specification, I use

an alternative price series for equilibrium SREC prices, which affects the net present installation cost

of PV systems through SREC incentives. In this case, I assume equilibrium SREC prices are equal

to the price floor in the market set by DOER annually. Average upfront installation costs across

other markets is used as an instrument for price, and one period ahead SREC prices are used as an

instrument for the discount factor. The normalized estimates report the capacity-specific constants in

households’ indirect utility function, β1, ..., β5, which can be separately identified by a transformation

of the original estimates.
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Table 15. SREC Upper Bound Robustness (return)

NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters NLIV

α: Net Present Installation Cost (000) -0.5193 (0.0544) α -0.5193

β̃2: Capacity [4,6) kW 2.3042 (0.6238) β1 -7.0094

β̃3: Capacity [6,8) kW 4.3189 (0.6851) β2 -4.7052

β̃4: Capacity [8,10) kW 5.9058 (0.9456) β3 -2.6905

β̃5: Capacity [10,20) kW 7.3098 (0.0000) β4 -1.1036

β̃0: Constant -4.8761 (1.0046) β5 0.3004

δ: Discount Factor 0.3044 (0.1542) δ 0.3044

Objective Function 2.7561

R2 0.2507

Markets 5

Years 10

Observations 250

Notes: The number of observations is 250 = 5 capacities × 5 utility markets × 10 years (2008–2017).

Heteroskedasticity-consistent standard errors are displayed in parentheses. In this specification, I use

an alternative price series for equilibrium SREC prices, which affects the net present installation cost

of PV systems through SREC incentives. In this case, I assume equilibrium SREC prices are equal

to the price ceiling in the market set by DOER annually. Average upfront installation costs across

other markets is used as an instrument for price, and one period ahead SREC prices are used as an

instrument for the discount factor. The normalized estimates report the capacity-specific constants in

households’ indirect utility function, β1, ..., β5, which can be separately identified by a transformation

of the original estimates.
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Table 16. Include Moment Conditions for All Terminal Adoption Decisions (re-
turn)

NLIV Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters NLIV

α: Net Present Installation Cost (000) -0.3244 (0.0308) α -0.3244

β̃2: Capacity [4,6) kW 1.3430 (0.3417) β1 -12.1782

β̃3: Capacity [6,8) kW 1.7792 (0.4534) β2 -10.8352

β̃4: Capacity [8,10) kW 1.6650 (0.6120) β3 -10.3990

β̃5: Capacity [10,20) kW 1.4451 (0.7816) β4 -10.5132

β̃0: Constant -3.9447 (0.4706) β5 -10.7331

δ: Discount Factor 0.6761 (0.0405) δ 0.6761

Objective Function 1,103.2291

R2 0.2636

Markets 5

Years 10

Moments 1,250

Notes: The number of moments is 1,250 = (5 capacities × 5 utility markets × 10 years) × 5 alternative

specifications of the outside option. Heteroskedasticity-consistent standard errors are displayed in

parentheses. Average upfront installation costs across other markets is used as an instrument for

price, and one period ahead SREC prices are used as an instrument for the discount factor. The

normalized estimates report the capacity-specific constants in households’ indirect utility function,

β1, ..., β5, which can be separately identified by a transformation of the original estimates.
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Table 17. Heterogenous Demand Estimates (return)

GMM, δ = 0.8 Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters Estimates

Mean Utility

α: Net Present Installation Cost (000) -0.1778 (0.0253) α -0.1778

β̃2: Capacity [4,6) kW 1.5899 (1.9727) β1 -13.0372

β̃3: Capacity [6,8) kW 2.0435 (2.4083) β2 -11.4473

β̃4: Capacity [8,10) kW 2.4617 (2.7450) β3 -10.9937

β̃5: Capacity [10,20) kW 2.3441 (2.8637) β4 -10.5756

β̃0: Constant -2.6074 (2.6001) β5 -10.6932

Income × Capacity

λ̃I1 0.0011 (0.0037) λI1 0.0056

λ̃I2 0.0030 (0.0023) λI2 0.0074

λ̃I3 0.0036 (0.0020) λI3 0.0081

λ̃I4 0.0053 (0.0015) λI4 0.0098

λ̃I5 0.0082 (0.0013) λI5 0.0126

Population Density × Capacity

λ̃P1 -0.0216 (0.0352) λP1 -0.1080

λ̃P2 -0.0229 (0.0275) λP2 -0.1094

λ̃P3 -0.0574 (0.0248) λP3 -0.1438

λ̃P4 -0.1103 (0.0254) λP4 -0.1967

λ̃P5 -0.1762 (0.0248) λP5 -0.2626

Democratic Vote Share × Capacity

λ̃V1 0.0122 (0.0391) λV1 0.0611

λ̃V2 -0.0056 (0.0274) λV2 0.0432

λ̃V3 -0.0146 (0.0234) λV3 0.0342

λ̃V4 -0.0254 (0.0221) λV4 0.0234

λ̃V5 -0.0259 (0.0218) λV5 0.0230

Objective Value 0.0000

R2 0.4686

Municipalities 345

Markets 4

Years 10

Market Moments 200

Municipal Moments 17,250

Notes: The number of market-level moments is 200 = 5 capacities × 4 utility markets × 10 years (2008–2017). The num-

ber of municipal-level moments is 17,250 = 345 municipalities × 5 capacities × 10 years (2008–2017). Heteroskedasticity-

consistent standard errors are displayed in parentheses. Households’ discount factor is set to 0.8 rather than estimated.

Average upfront installation cost across other markets is used as an instrument for prices, and one period ahead SREC

prices are used as an instrument for the discount factor. Note that the net present installation cost (price) is a func-

tion of δ in the model. The normalized estimates report the capacity-specific constants, β1, ..., β5, and capacity-specific

demographic interactions, λ1, ..., λ5, in households’ indirect utility function, which can be separately identified by a

transformation of the original estimates.
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Table 18. Cumulative Adoptions by System Size (return)

System Capacity (kW)

Homogenous Demand [0,4) [4,6) [6,8) [8,10) [10,20) Total

Actual 3,077 6,921 6,494 4,834 4,581 25,907

Predicted 3,294 9,423 8,559 5,162 2,365 28,803

CF (1): Upfront Subsidies 1,913 2,118 1,266 404 72 5,773

CF (2): SREC 2,665 2,686 713 145 15 6,225

CF (3): Net Metering 10% 2,823 4,398 2,025 582 93 9,920

CF (3): Net Metering 25% 2,897 4,991 2,568 833 157 11,446

CF (3): Net Metering 50% 3,024 6,165 3,826 1,522 383 14,920

CF (3): Net Metering 75% 3,157 7,621 5,716 2,796 945 20,235

CF (3): Net Metering 90% 3,238 8,656 7,281 4,038 1,637 24,849

System Capacity (kW)

Heterogenous Demand [0,4) [4,6) [6,8) [8,10) [10,20) Total

Actual 3,045 6,858 6,393 4,759 4,508 25,563

Predicted 2,965 5,701 4,721 4,150 3,979 21,515

CF (1): Upfront Subsidies 2,137 2,334 1,560 982 552 7,565

CF (2): SREC 2,571 2,921 1,275 601 260 7,629

CF (3): Net Metering 10% 2,723 3,792 2,207 1,325 741 10,787

CF (3): Net Metering 25% 2,762 4,058 2,503 1,600 977 11,900

CF (3): Net Metering 50% 2,829 4,545 3,090 2,195 1,553 14,211

CF (3): Net Metering 75% 2,896 5,090 3,818 3,016 2,480 17,301

CF (3): Net Metering 90% 2,937 5,448 4,336 3,652 3,292 19,665

Notes: The top panel displays cumulative adoptions (2008–2017) based on the homogenous prefer-

ences demand model, while the bottom panel displays cumulative adoptions (2008–2017) based on

the heterogenous preferences demand model. “Actual” refers to observed residential, host-owned PV

installations, “Predicted” refers to the number of adoptions predicted by the model, and “CF” refers

to the number of adoptions predicted by the model under a counterfactual scenario where one of

households’ financial incentives is removed.
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Table 19. Annual Consumer Surplus from Incentive Programs (return)

Homogenous Demand Upfront Subsidies SREC Programs Net Metering (50%)

Year
Market

Size
Average

∆CS

Total
∆CS

(000,000)

Average
∆CS

Total
∆CS

(000,000)

Average
∆CS

Total
∆CS

(000,000)

2008 2,383,484 12,155 28,970 0 0 1,097 2,614

2009 2,383,186 8,780 20,925 5,542 13,208 1,239 2,952

2010 2,382,601 6,977 16,623 5,297 12,621 1,272 3,030

2011 2,382,202 5,787 13,786 5,081 12,104 1,315 3,131

2012 2,381,422 5,133 12,225 5,315 12,658 1,494 3,559

2013 2,380,426 5,454 12,983 4,578 10,898 1,668 3,970

2014 2,378,610 5,071 12,062 4,593 10,925 1,787 4,251

2015 2,375,246 4,076 9,681 4,423 10,506 1,845 4,382

2016 2,369,684 3,925 9,301 4,218 9,995 1,898 4,497

2017 2,363,045 3,924 9,273 4,019 9,497 1,975 4,668

Heterogenous Demand Upfront Subsidies SREC Programs Net Metering (50%)

Year
Market

Size
Average

∆CS

Total
∆CS

(000,000)

Average
∆CS

Total
∆CS

(000,000)

Average
∆CS

Total
∆CS

(000,000)

2008 2,856,298 12,119 34,616 0 0 1,014 2,897

2009 2,855,726 8,600 24,559 5,205 14,863 1,144 3,267

2010 2,855,339 6,935 19,803 4,997 14,269 1,179 3,366

2011 2,854,571 5,733 16,364 4,807 13,721 1,220 3,483

2012 2,853,586 5,068 14,462 5,021 14,327 1,383 3,947

2013 2,851,785 5,406 15,418 4,330 12,349 1,548 4,414

2014 2,848,465 4,943 14,079 4,323 12,313 1,650 4,699

2015 2,842,967 4,043 11,493 4,204 11,953 1,717 4,881

2016 2,836,418 3,878 11,001 4,021 11,405 1,770 5,020

2017 2,831,024 3,854 10,909 3,811 10,789 1,827 5,172

Notes: The top panel displays the estimated annual consumer surplus attributable to each incentive

program based on the homogenous preferences demand model, while the bottom panel displays the

estimated annual consumer surplus attributable to each incentive program based on the heterogenous

preferences demand model. Note that these changes in consumer surplus are marginal estimates holding

the level of the other incentive programs fixed. The market size for the homogenous and heterogenous

demand estimates differ because the estimated initial market size for the homogenous demand model is

approximated using the number of residential electricity customers in each utility service area in 2008,

while the initial market size for the heterogenous demand model is approximated using the number

of households in each municipality in 2008. Notice, however, that the average change in consumer

surplus is very similar across models.
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Table 20. Generation (MWh) by System Size
(2008–2017) (return)

System Capacity (kW)

[0,4) [4,6) [6,8) [8,10) [10,20) Total

Actual 50,587 148,762 148,942 131,557 145,459 625,308

Predicted 58,211 259,550 289,394 217,539 119,555 944,249

CF (1): Upfront Subsidies 30,111 47,534 38,512 15,330 3,226 134,712

CF (2): SREC 52,960 83,703 22,227 5,294 630 164,814

CF (3): Net Metering 10% 50,293 124,997 72,300 26,279 5,337 279,205

CF (3): Net Metering 25% 51,531 141,134 90,960 37,233 8,862 329,721

CF (3): Net Metering 50% 53,669 172,860 133,566 66,787 20,855 447,736

CF (3): Net Metering 75% 55,899 211,798 196,467 120,305 49,667 634,135

CF (3): Net Metering 90% 57,277 239,277 247,827 171,574 84,034 799,989

Notes: This table displays the estimated cumulative electricity generation in MWh (2008–2017) by

residential, host-owned PV systems in Massachusetts. “Actual” refers to estimated cumulative gen-

eration based on the number of observed residential, host-owned PV installations, “Predicted” refers

to estimated cumulative generation based on the number of adoptions predicted by the homogenous

demand estimates, and “CF” refers to estimated cumulative generation based on number of adoptions

predicted by the model under a counterfactual scenario where one of households’ financial incentives

is removed.

Table 22. Value of Avoided CO2 Emissions
(2008–2017) (return)

Program
Social
Value

CF (1): Upfront Subsidies 5,250,482

CF (2): SREC 5,055,248

CF (3): Net Metering 10% 4,313,331

CF (3): Net Metering 25% 3,985,699

CF (3): Net Metering 50% 3,220,277

CF (3): Net Metering 75% 2,011,330

CF (3): Net Metering 90% 935,635

Notes: This table displays the social value attributable to each solar incentive program during the
2008–2017 period based on counterfactual avoided CO2 emissions, where the social cost of CO2 per
MWh of electricity generated is $9.79.
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Table 23. Subsidies Distributed During 2008–2017 Period
by System Capacity (return)

System Capacity (kW)

Means [0,4) [4,6) [6,8) [8,10) [10,20) Total

Av. Upfront Installation Cost 16,223 23,059 28,724 35,285 45,341 29,726

Av. Upfront Subsidies 7,874 9,725 10,036 11,812 14,670 10,823

Av. SREC Revenue 3,811 6,226 7,177 8,579 9,884 7,135

Av. Net Metering/Avoided Elec. Cost 2,814 3,784 4,188 4,999 5,917 4,341

Av. Total Subsidies 14,498 19,735 21,402 25,390 30,472 22,299

Totals

Total Adoptions 3,077 6,921 6,494 4,834 4,581 25,907

Total Upfront Subsidies 24,227,757 67,305,769 65,174,368 57,101,308 67,204,118 281,013,318

Total SREC Revenue 11,725,475 43,086,799 46,610,407 41,469,160 45,280,764 188,172,604

Total Net Metering/Avoided Elec. Cost 8,658,339 26,190,516 27,199,053 24,164,081 27,107,502 113,319,491

Total Subsidies 44,611,571 136,583,084 138,983,827 122,734,548 139,592,383 582,505,414

Notes: This table displays the average upfront installation cost, as well as, the average (and total) sub-

sidies households received through each incentive program during the 2008–2017 period, broken down

by system capacity. Unlike table 24, these estimates account only for realized incentives distributed

during the 2008–2017 period. The average upfront installation cost during 2008–2017 is $29,726. The

average upfront subsidy to households is $10,823. The average amount of SREC revenue distributed

to households during this period is $7,135. The average amount of net metering/avoided electricity

cost revenue distributed to households during this period is $4,341. Therefore, average total subsidies

households adopting during 2008–2017 receive over the lifespan of their systems is $22,299.
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Table 24. Subsidies Over System Lifespan
by System Capacity (return)

System Capacity (kW)

Means [0,4) [4,6) [6,8) [8,10) [10,20) Total

Av. Upfront Installation Cost 16,223 23,059 28,724 35,285 45,341 29,726

Av. Upfront Subsidies 7,874 9,725 10,036 11,812 14,670 10,823

Av. SREC Revenue 12,622 21,644 29,666 37,783 48,340 30,011

Av. Net Metering/Avoided Elec. Cost 25,420 41,499 59,963 78,144 105,088 62,023

Av. Total Subsidies 45,915 72,868 99,665 127,739 168,099 102,857

Totals

Total Adoptions 3,077 6,921 6,494 4,834 4,581 25,907

Total Upfront Subsidies 24,227,757 67,305,769 65,174,368 57,101,308 67,204,118 281,013,318

Total SREC Revenue 38,837,102 149,800,797 192,654,078 182,644,966 221,447,812 785,384,754

Total Net Metering/Avoided Elec. Cost 78,216,904 287,212,249 389,398,729 377,745,895 481,408,103 1,613,981,881

Total Subsidies 141,281,763 504,318,814 647,227,174 617,492,168 770,060,033 2,680,379,953

Notes: This table displays the average upfront installation cost, as well as, the average (and total)

subsidies households received through each incentive program over the (25 year) lifespan of their PV

systems, broken down by system capacity. The average upfront installation cost during 2008–2017

is $29,726. The average upfront subsidy to households is $10,823. The average amount of SREC

revenue a household could expect to receive over 25 years is $30,011. The average amount of net

metering/avoided electricity cost revenue a household could expect to receive over 25 years is $62,023.

Therefore, average total subsidies households adopting during 2008–2017 receive over the lifespan of

their systems is $102,857.
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B Figures

Figure 1. PV System Technology (return)

(a)

(b)
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Figure 2. Declining Manufacturing Costs (return)

(a) Kavlak, McNerney, and Trancik (2018)

(b) Louwen and van Sark (2020)

(c) National Renewable Energy Laboratory
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Figure 3. Overall PV Price and Adoption Rate in Massachusetts (return)
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Notes: The denominator of cumulative adoption is the total number of residential electric utility
customers in Massachusetts in 2008. Cumulative adoption includes all residential PV installations,
both host owned and third-party owned. Annual upfront installation price per kW is weighted by
annual capacity installed.
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Figure 4. DPU Map of Utility Service Areas (return)

Figure 5. Market for SRECs (return)
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Notes: This figure illustrates how equilibrium certificate prices are bounded in the SREC market by a
price ceiling and a price floor determined by DOER. The price ceiling is the alternative compliance price
(ACP) an electric utility is required to pay (per kWh) if it violates its renewable portfolio standards
(RPS). The price floor is a quantity auction price at which households earning SRECs are essentially
guaranteed to sell their certificates for in the event that a surplus exists.
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Figure 6. Residential Adoptions (return)
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As illustrated, pre-2008 PV installations were relatively limited.

Figure 7. Host Owned vs. Third-party Owned Systems (return)
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Notes: Third-party owned PV installations make up just under 2/3 of all residential installations with
the rest being host owned installations. As discussed, the choice of host owned and third-party owned
PV systems is quite different, therefore, I limited my analysis to host owned systems only. Notice
there is little difference in the average upfront installation price of host owned and third-party owned
systems during the sample period.

75



Figure 8. Adoptions, Cost, Capacity, and Production by Capacity (return)
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Notes: This figure shows adoptions, cumulative adoptions, average and median installation costs,
median capacity, and median estimated annual production of systems for my estimation sample by
capacity group over time.
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Figure 9. Rebates by Capacity (return)
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Notes: This figure shows the percent of installations that received a state grant/rebate and the median
state grant/rebate given for my estimation sample by capacity group over time.

Figure 10. Actual and Forecasted Average Electricity Prices (return)
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Notes: Panel (a) shows average residential electricity prices over time in each utility service area in
Massachusetts during the sample period, where municipal utilities are grouped together. Panel (b)
shows actual and forecasted electricity prices over time in each utility service area, where the forecast
is a utility-specific log-linear trend. These forecasts are an input into the present value of net metering
in the empirical model.
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Figure 11. Nominal SREC Incentive Schedules (return)
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Notes: This figure shows the schedule of SREC prices over time in nominal dollars, where panel (a)
shows the prices of SREC I certificates and panel (b) shows the prices of SREC II certificates. The
alternative compliance prices and quantity auction prices are set by DOER and bound equilibrium
SREC prices in the market. I use the midpoint of these prices to represent the equilibrium price of
SRECs in the empirical model.

Figure 12. Real SREC Incentive Schedules (return)
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Notes: This figure shows the schedule of SREC prices over time adjusted for inflation, where panel
(a) shows the prices of SREC I certificates and panel (b) shows the prices of SREC II certificates. The
alternative compliance prices and quantity auction prices are set by DOER and bound equilibrium
SREC prices in the market. I use the midpoint of these prices to represent the equilibrium price of
SRECs in the empirical model.
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Figure 13. Revenue from Long-term Incentive Programs by Capacity (return)
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Notes: This figure shows the present value of revenues generated from both long-term incentive
programs over time by capacity when households’ discount factor, δ = 0.9. Panel (a) shows the
present value of revenues from the net metering program, and panel (b) shows the present value of
revenues from the SREC programs.

Figure 14. Installation Costs and Incentives (return)
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Notes: Panel (a) shows the net present installation cost over time by system capacity when households’
discount factor, δ = 0.9. Panel (b) shows the breakdown of the net present installation cost over time
for a [4,6) kW capacity system into its various components.
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Figure 15. Electricity Price Robustness (return)
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Notes: This figure show the alternative electricity price trajectories I use to assess the sensitivity of
my model to assumptions about the future growth of electricity prices. Panel (a) shows the “linear
price path,” and panel (b) shows the “no growth price path.”

Figure 16. Actual, Predicted, and Counterfactual Cumulative Adoption (return)
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Notes: This figure shows actual, predicted, and counterfactual cumulative adoptions based on my
demand estimates. Panel (a) shows predictions based on the homogeneous demand model and panel
(b) shows predictions based on the heterogenous demand model.
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Figure 17. Homogenous Demand: Actual, Predicted, and Counterfactual Cumu-
lative Adoption by Capacity (return)
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Notes: This figure shows actual, predicted, and counterfactual cumulative adoptions by system ca-
pacity based on the homogeneous demand model estimates.

81



Figure 18. Heterogenous Demand: Actual, Predicted, and Counterfactual Cu-
mulative Adoption by Capacity (return)
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Notes: This figure shows actual, predicted, and counterfactual cumulative adoptions by system ca-
pacity based on the heterogenous demand model estimates.
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Figure 19. Upfront vs. Future Incentives Counterfactual (return)

(a)

6,225

7,032

11,376

0

2,000

4,000

6,000

8,000

10,000

12,000

C
u
m

u
la

ti
v
e
 I
n
s
ta

lla
ti
o
n
s

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Predicted $10,000 Upfront $10,000 Over 25 Years

Cumulative Adoption
 

Notes: This figure shows predicted cumulative adoptions in the case of no incentives compared with two
counterfactual scenarios: (1) where households are given $10,000 in upfront incentives and (2) where
households are given $10,000 in long-term incentives over a period of 25 years. This demonstrates the
impact of discounting behavior on the efficacy of long-term incentives.

Figure 20. Actual, Predicted, and Counterfactual Annual Generation (return)
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Notes: This figure shows actual, predicted, and counterfactual annual electricity generation based on
my homogenous demand estimates.
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C Third-Party Adoption

In this section, I extend my model of PV adoption to allow households’ the option

to adopt third-party owned PV systems. A concern with my main economic model is

that it does not account for third-party owned PV systems, which may lead me to over

predict host owned PV adoption using the model if households substitute away from

host owned to third-party owned PV as this option becomes more widely available.

As discussed in section 4, third-party ownership agreements or solar lease agreements

whereby households’ lease solar panels from companies such as SolarCity is an increas-

ingly popular option during my sample period—eventually making up just under 2
3

of

all residential installations in Massachusetts (see Figure 6). However, without data on

the terms of these agreements, I am unable to measure the effective prices that house-

holds face when they are choosing whether to enter into these contracts. In my main

analysis, the choice to lease PV is subsumed into the outside option—waiting until a

future period to adopt. Below, I include third-party ownership explicitly in the model.

I specify the model with household heterogeneity to allow for correlation between

households’ demographic characteristics and their alternatives. Without this flexibility,

including third-party owned PV as another alternative in the model would result in

substitution away from host owned PV and waiting to adopt directly proportional to

their market shares due to the IIA property of logit.

At each time t, suppose that in addition to having the option to adopt a PV system

j = 1, ..., J now or wait until later to adopt j = 0, a household i now has the option to

adopt a third-party owned system, denoted j = ∅. Household i’s indirect utility from

adopting j = ∅ at time t is given by,

ui∅t = ū∅t + µi∅t + εi∅t,

Assuming that households located in the same municipality ` have similar demo-

graphic characteristics, let ui∅t be the flow utility each household i ∈ ` obtains from

adopting system j = ∅ in time t, where variation in preferences across municipalities

depends upon certain demographic characteristics,

ui∅t = β∅,t + ξ∅t︸ ︷︷ ︸
ū∅t

+λI∅inc` + λP∅pop` + λV∅vote`︸ ︷︷ ︸
µ̄`∅t

+εi∅t,

Households’ mean utility from third-party owned PV is modeled simply as a series

of alternative-time specific constants β∅,t, which capture the evolution of households’

preferences for third-party owned PV over time without any direct information about

how the terms of solar lease agreements vary over time. The demographic interactions
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λI∅, λ
P
∅, and λV∅ allow households’ preferences for third-party owned PV to vary across

municipalities.

Including this alternative in my main model and estimating it using GMM, I report

the results below in Table 25. Notice that the parameter estimates for host owned PV

systems are very similar to those reported in table Table 17. The estimates of β∅,t show

the increasing popularity of third-party owned PV over time, and the demographic

interactions show that solar leasing is negatively correlated with income, population

density, and democratic vote share, which are intuitive results when compared relative

to the demographic parameters interacted with host owned systems.

Given that the model appears to be picking up some substitution to third-party

owned PV in the way one would expect, I compare the predictions of this model to

the predictions of my main heterogenous demand model. In Figure 21, I plot predicted

cumulative installations over time using both models and find that the model including

the third-party option predicts only slightly less host owned PV adoption—this implies

that the augmented model predicts more substitution from the outside option to third-

party owned PV than from host owned to third-party owned PV, which makes the

exclusion of third-party agreements from the main model less of a concern.

Figure 21. Third-Party Model Fit: Actual and Predicted Cumulative Adoption
(return)
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Table 25. Heterogenous Demand Estimates with Third-Party Option (return)

GMM, δ = 0.8 Normalized Estimates

Parameters Estimates
Standard

Errors
Parameters Estimates

Mean Utility
α: Net Present Installation Cost (000) -0.1791 (0.0259) α -0.1791

β̃2: Capacity [4,6) kW 1.7020 (2.1508) β1 -12.9420

β̃3: Capacity [6,8) kW 2.1988 (2.6341) β2 -11.2400

β̃4: Capacity [8,10) kW 2.6443 (3.0190) β3 -10.7431

β̃5: Capacity [10,20) kW 2.5504 (3.1469) β4 -10.2977

β̃0: Constant -2.5884 (3.0174) β5 -10.3916

β̃∅,1: Third-Party, 2008 -4.0226 (2.4808) β∅,1 -14.3762

β̃∅,2: Third-Party, 2009 2.3650 (3.6695) β∅,2 -7.9886

β̃∅,3: Third-Party, 2010 3.8752 (3.6097) β∅,3 -6.4784

β̃∅,4: Third-Party, 2011 4.7349 (3.6573) β∅,4 -5.6187

β̃∅,5: Third-Party, 2012 6.3850 (3.5841) β∅,5 -3.9686

β̃∅,6: Third-Party, 2013 5.9807 (3.6605) β∅,6 -4.3729

β̃∅,7: Third-Party, 2014 6.0992 (3.6312) β∅,7 -4.2544

β̃∅,8: Third-Party, 2015 7.5486 (3.6738) β∅,8 -2.8049

β̃∅,9: Third-Party, 2016 7.8323 (3.7131) β∅,9 -2.5213

β̃∅,10: Third-Party, 2017 7.3857 (3.6183) β∅,10 -2.9679

Income × Capacity

λ̃I1 0.0011 (0.0030) λI1 0.0056

λ̃I2 0.0029 (0.0020) λI2 0.0074

λ̃I3 0.0035 (0.0017) λI3 0.0079

λ̃I4 0.0049 (0.0014) λI4 0.0094

λ̃I5 0.0074 (0.0012) λI5 0.0119

λ̃I∅ -0.0118 (0.0044) λI∅ -0.0074

Population Density × Capacity

λ̃P1 -0.0237 (0.0439) λP1 -0.1185

λ̃P2 -0.0275 (0.0364) λP2 -0.1223

λ̃P3 -0.0742 (0.0336) λP3 -0.1690

λ̃P4 -0.1460 (0.0329) λP4 -0.2408

λ̃P5 -0.2321 (0.0310) λP5 -0.3268

λ̃P∅ 0.0438 (0.0299) λP∅ -0.0510

Democratic Vote Share × Capacity

λ̃V1 0.0118 (0.0464) λV1 0.0588

λ̃V2 -0.0077 (0.0343) λV2 0.0394

λ̃V3 -0.0168 (0.0294) λV3 0.0303

λ̃V4 -0.0273 (0.0263) λV4 0.0197

λ̃V5 -0.0274 (0.0245) λV5 0.0197

λ̃V∅ -0.0615 (0.0240) λV∅ -0.0145

Objective Value 0.0000
R2 0.6910
Municipalities 345
Markets 4
Years 10
Market Moments 240
Municipal Moments 20,700

Notes: The number of market-level moments is 240 = 6 choices × 4 utility markets × 10 years (2008–2017). The number

of municipal-level moments is 20,700 = 345 municipalities × 6 choices × 10 years (2008–2017). Heteroskedasticity-

consistent standard errors are displayed in parentheses. Households’ discount factor is set to 0.8 rather than estimated.

Average upfront installation cost across other markets is used as an instrument for prices, and one period ahead SREC

prices are used as an instrument for the discount factor. Note that the net present installation cost (price) is a function

of δ in the model. The normalized estimates report the capacity-specific constants, β1, ..., β5, and capacity-specific

demographic interactions, λ1, ..., λ5, in households’ indirect utility function, which can be separately identified by a

transformation of the original estimates.
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D NLLS Estimation

• Estimating Equation

log
(sjt
s0t

)
=
(
βj − δβ1

)
− α

(
pjt − δp1t+1

)
+ δ log (s1t+1) + ejt

• Objective Function

Q(θ) =
1

N
(e′e)

• Gradient

g(θ) =
[
1 d2 d3 d4 d5

]

β̃0

β̃2

β̃3

β̃4

β̃5

− α
(
pjt − δp1t+1

)
+ δ log (s1t+1)

∂g(θ)

∂β̃0

= 1,
∂g(θ)

∂β̃j
= dj,

∂g(θ)

∂α
= −

(
pjt − δp1t+1

)
∂g(θ)

∂δ
= −α

(∂pjt
∂δ
− p1t+1 − δ

∂p1t+1

∂δ

)
+ log (s1t+1)

∂g(θ)

∂θ

∣∣∣∣
θ̂

=

[
1, d2, d3, d4, d5,−

(
pjt−δ̂p1t+1

)
,−α̂

( ∂pjt
∂δ

∣∣∣∣
δ̂

−p1t+1−δ̂
∂p1t+1

∂δ

∣∣∣∣
δ̂

)
+log (s1t+1)

]

∂pjt
∂δ

= −gjt
[
pejt pejt+1 pejt+2 ... pejt+24

]


0

(1− d)

2δ(1− d)2

...

24δ23(1− d)24



−gjt
[
pscjt pscjt+1 pscjt+2 ... pscjt+24

]


0

(1− d)

2δ(1− d)2

...

24δ23(1− d)24


• White’s Estimator of Asymptotic Variance

V̂(θ̂NLLS) =
( N

N −K

)
(Ĝ′Ĝ)−1Ĝ′Ω̂Ĝ(Ĝ′Ĝ)−1

Ĝ = − ∂g(θ)

∂θ

∣∣∣∣
θ̂

Ω̂ = Diag(ê2
i )
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• Objective Function

Q(θ) = (e′Z)W(Z′e)

• White’s Estimator of Asymptotic Variance

V̂(θ̂GMM) =
( N

N −K

)
(Ĝ′ZWZ′Ĝ)−1(Ĝ′ZWŜWZ′Ĝ)(Ĝ′ZWZ′Ĝ)−1

Ĝ = − ∂g(θ)

∂θ

∣∣∣∣
θ̂

Ŝ =
∑
i

êiziz
′
i
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